

Journal of Engineering Science and Technology Review 14 (6) (2021) 28 - 34

Research Article

Dictionary Structure Identification

Lefteris Moussiades1,*, Ioannis Tsimperidis1 and Stavros Kanarakis2

1Department of Computer Science, International Hellenic University, Kavala 65404, Greece

2Sword Services Greece SA, Kifisia 14564, Greece

Received 4 June 2021; Accepted 8 December 2021
__

Abstract

In this paper, we propose a vocabulary structure identification system. The proposed system receives an image of a
vocabulary that lies in a textbook, converts the image into text, and then proceeds to identify the vocabulary structure, i.e.
it identifies and associates each vocabulary term with its translation, explanation, examples and other relevant information.
Our approach is based on pattern matching and the concept of publisher specifications, which represents the vocabulary
structure followed by the publisher. Variations in the structure between terms in the same vocabulary are dealt with using
directed cyclic graphs. Our experimentation shows positive results and encourages us to further development.

Keywords: Information extraction, OCR image, vocabulary parser
__

1. Introduction

This paper aims to create electronic vocabularies from
lexicographical terms found in English language learning
books. Our objective is to use structured vocabularies as “raw
material” in other educational applications.
In foreign language textbooks, each section includes a
subsection entitled Vocabulary. However, this title can be
relatively misleading as this subsection has a dictionary
structure. More specifically, it includes the new words that the
student should learn. Each word contains its translation into
the student's language, its explanation in the foreign language,
examples of its use, and other information. Our purpose is to
recognize the structure of such a vocabulary to digitize it. The
main difficulty in this project is that each publishing house
adopts a different vocabulary structure. This is where our
contribution in relation to existing work on digitizing
dictionaries presented in section 2 focuses.
 This work has been implemented for English to Greek
vocabularies. However, it is language independent and can be
applied to any dictionary involving languages written from
left to right.
The steps to digitize a vocabulary are:
1. Initially, a photo is taken from a book page containing the
lexical terms.
2. The photo is subjected to pre-processing to improve some
of its quality features before it is sent for OCR.
3. The edited photo is then sent to an OCR service to create
an RTF file.
4. Finally, the algorithm proposed in this paper is applied to
the RTF file to identify the vocabulary structure and its
content, i.e., to identify the term for each vocabulary entry, its
translation, explanation, examples of usage, etc.
 The output of our approach is a JSON file. Early
experimental results of our system are encouraging as they
show that vocabularies are recognized correctly with high
reliability.

 The rest of this paper's structure is as follows: Section 2
presents relevant bibliography. A detailed presentation of our
approach is given in section 3. Following, in section 4, we
offer experimentation, and finally, in section 5, conclusions
from this process's implementation are outlined, and
proposals are made to develop further and exploit it.

2. Relevant Bibliography

Creating structured text from sources that contain it in
amorphous form is achieved through “Information
Extraction” technology (IE) [1, 2, 3].
Information Extraction (IE) is a process where structured
information is automatically generated from one or more texts
that are fully or partially unstructured. Although emerging as
a concept in the 70s, it attracted much interest from the
scientific community in the late 80s and early 90s with a
DARPA-funded project at Message Understanding
Conferences (MUC) [1]. IE is applied in a wide range of
scientific fields such as biomedicine, finance, information
analysis, web search etc. [4]. Sometimes, it's considered the
same with Natural Language Processing (NLP) or with
Information Retrieval (IR) because it may borrow techniques
from the above technologies or it can be used as an
intermediate stage by them. However, it must be said that IE
deals mainly with the structure of a text, whereas in IR, the
text is usually regarded as a Bag of Words (BOW) [5], as well
that the goal of IR is to select a subset of texts from a more
extensive set. IE systems create structured information, either
a summary or a collapsed text derived from the original or the
original text in a structured format (database, JSON file, etc.).
Beyond that, the result can be introduced into new data
mining processes (DM), NLP, or any other function.
 In the simplest case, information is extracted by a set of
rules applied to the unstructured text. [3]. Most advanced
implementations involve using machine learning algorithms
so that the “extraction algorithm” can gradually be more
efficient and accurate in producing results [2].

JOURNAL OF
Engineering Science
and Technology Review

 www.jestr.org

Jestr

r

*E-mail address: lmous@cs.ihu.gr
ISSN: 1791-2377 © 2021 School of Science, IHU. All rights reserved.
doi:10.25103/jestr.146.03

Lefteris Moussiades, Ioannis Tsimperidis and Stavros Kanarakis/Journal of Engineering Science and Technology Review 14 (6) (2021) 28 - 34

 29

 Depending on the problem's nature, IE systems fall into
two categories, single-slot and multi-slot. Single-slot systems
extract information related to one object per text. In contrast,
multi-slot systems extract information on multiple items [6].
Open IE Systems, a subcategory of IE, create automatically
the rules based on the type of information that the system
audit with typical examples [7, 8]. IE systems that processing
partially structured or unstructured text can be found in [6, 9,
10, 11, 12].
 WHISK is a supervised machine learning software that
extracts sentence-level information. It needs an input of
preconfigured text and semantic tags in words or phrases to
train it for the correct identification of text or words in
unstructured documents [6]. JASPER [9] uses “template
rules” to extract information from limited-range texts. Rapier
algorithm [10] consists of an alternative approach to machine
learning systems by implementing an inductive logic
programming (ILP) system. It is a machine learning system
based on a particular set of attributes that extracts information
by combining logical rules and background knowledge
extracted at the first pass of reading the text. The SRV
machine-learning algorithm uses generic features to extract
information to operate on a broader range of different text, but
it is closer to IR systems than IE. Kushmerick [12] presents a
system of “wrapper” classes trained from an inductive
learning system.
 WOE [7] is an Open IE system that uses an information
extractor to extract a set of “triple information” ({arg1, rel,
arg2}) from an unstructured text, with rel being a rule
denoting the semantic relationship between arg1 and arg2.
WOE is an unsupervised learning information extractor.
Therefore, it can handle several Web resources, unlike
TextRunner [8], supervised machine learning that extracts the
triple information set only from Wikipedia texts.
 IE systems based on machine learning algorithms or Open
IE systems require robust computing power to function
correctly, making their use on portable systems difficult.
Also, the rules from which information are extracted are
usually in the form of regular expressions which may be aided
by grammar rules or rules that attempt to derive a semantic
relationship between words or expressions [6].
 Ferreira et al. [13] leveraged MedInX to give structure in
narrative data available in electronic form, achieving an F-
measure at 0.95. Uddin et al. [14] have presented an algorithm
for information and relation extraction to facilitate students'
locating important terms of a text and their relationships. In
their method, first, they extract the concepts from eBooks,
then filtered the critical concepts, subsequently extracted the
relations between each couple of concepts, and finally
annotated the unstructured text with tags to be more navigable
and usable. They applied their method to a set of 30 eBooks
and reported excellent results.
Having similar goals, Wang et al. [15] suggested a process for
creating a concept hierarchy of a book, which is a powerful
tool in presenting and organizing knowledge.
 Webpages and their content are also areas in which
information extraction is applied. Web wrappers are software
that extracts specific information from a webpage. Traditional
web wrappers must be adapted to the template of each
webpage. Cogar et al. [16] proposed a convolutional neural
network to extract structured information from webpages
regardless of their template. They use the web rendering
engine to obtain screenshots and the DOM tree of a webpage.
The neural network then processes the visual and textual
content to decide whether a page corresponds to a class
belonging to a predefined class set.

 In another work, Romero et al. [17] focused on extracting
structured information from handwritten texts. Specifically,
they used as a dataset 1,747 marriage licenses written in
ancient Catalan in the 17th century. In their methodology, n-
gram models are just a subclass of Probabilistic Finite-State
Machines (PFSM) while using a framework, known as
Morphic Generator Grammatical Inference (MGGI), to form
constraints. The semantic categories that were defined were
the groom's name, the bride's name, the names of their
parents, their cities of origin, etc. The results showed a correct
extraction of the information with high precision and recall.
 Despite the rich literature on extracting structured
information from text, none of the above tasks is suitable for
our purpose. The works mentioned immediately next are more
closely related to our pursuit.
 Sassolini et al. [18] attempted to digitize an authoritative
historical Italian dictionary consisting of 22,700 pages
divided into 21 volumes, containing 183,594 entries. They
followed a process for extracting and structuring dictionary
contents and converting them into Text Encoding Initiative
XML, which has been organized into several iterative steps to
reduce the number of unavoidable errors. In their
methodology, they first used OCR to recognize the text from
the printed form, thus creating word (.doc) format files, then
segmented these files so that each segment consisted of 50-60
pages, and continued with the identification of entries. For
each identified lexical entry, the headword (or lemma) and a
text area corresponding to the body of the entire entry is
recognized. The further steps include the iterative
segmentation of the body of the lexical entry into different
blocks with grammatical information, primary senses, sense
attestations and examples, other numbered sub-senses with
examples, and etymology. They decided to follow an
approach based on pattern matching for the lemma extraction.
A check on the number of conditions satisfied is activated
whenever the lemma cannot be recognized with certainty. In
their work, authors mainly focused on the early stages of
converting the dictionary contents into structured digital data.
However, as the authors note, the process they propose is not
automated but instead requires manual work while
simultaneously being incomplete. It is therefore not suitable
for our pursuit.
 Reul et al. [19] dealt with the typographical variations of
the text found in a lexicon and coded the information. For
example, changing the font may signal the separation between
the lemma and its explanation. For this reason, authors used a
German dictionary from the 19th century, which comprises a
particularly complex semantic function of typography. The
method that followed involved a preliminary phase in which
the text would be scanned to convert from several columns to
one. Then, a step in which the OCR tool would be modified
to recognize 19th-century typographic fonts, a phase in which
two models would be trained, one of which would identify the
typography and the other the characters, and finally a phase
which would combine the results of the two models. Despite
the difficulties, such as that the dictionary fonts used are not
encountered today, the experimental results showed an error
in the correct recognition of the characters of the order of
0.4% and a success rate in recognizing the typography of the
order 99%. Although applied to a dictionary, this work is
limited to identifying characters that are expressed in fonts
that are not currently available. Therefore, it is not suitable for
our purpose.
 In a similar work Stain [20] turned older printed
dictionaries into more easily accessible and more sustainable
lexical databases. For this reason, he used a dictionary of the

Lefteris Moussiades, Ioannis Tsimperidis and Stavros Kanarakis/Journal of Engineering Science and Technology Review 14 (6) (2021) 28 - 34

 30

early 20th century with lemmas in Old French and word
senses in German, while the only tool available was a list of
French lemmas. With the help of OCR, the text was converted
to electronic format and manual corrections were made where
the double-column format could not be recognized. Then for
each of the lemmas available in the list, its location in the text
was identified; for each of the lemmas, the senses were
extracted, which were identified based on the differences in
the typography, such as that they were in italics. Then, for the
modernization of the dictionary, Stain linked the extracted
senses to a semantic network, specifically the GermanNet. At
the same time, for its internationalization, he connected the
results with a semantic network in English, WordNet. This
work on semantic evaluation is based solely on typographical
differences. However, the vocabularies in foreign language
textbooks take advantage of typographical differences but do
not rely solely on them.
 Belyaev et al. [21] deal with almost the same problem, but
with a dictionary written in Ossetic, an Iranian language
spoken in the Caucasus by approximately 500,000 people.
They acknowledged that digitization for dictionaries written
in widely spoken languages, such as English, had already
taken place. In contrast, many dictionaries remain only in
print for other spoken languages, especially minority
languages. The authors used off-the-shelf software to help
them separate the parts of an entry, such as the headword, one
or more senses, one or more examples, etymology, etc. After
this, the next stage was converting dictionary format to Text
Encoding Initiative (TEI), which defines a set of tags and
constraints for representing texts in digital form. The end
result was the translation of the dictionary into English and
providing semantic markup that would make it searchable
across multiple types of data and accessible for machine-
based processing. This work concerns a specific lexicon and
considers its structure defined and known, so it can not be
used to identify dictionaries whose structure varies, such as
the vocabularies contained in foreign language books.
 Bertrand et al. [22] also deal with the issue of automatic
document structuring in their work, recognizing that
typography, such as bold or italic letters, plays a crucial role
in semantics and can provide important information about the
document structure. Their two-phase method was applied to
several list-like historical documents, such as dictionaries,
catalogues, etc. In the first phase, an entire page is taken as
input, and with the help of a convolutional neural network, the
words in it are identified. In the second phase, with the help
of a deep learning API, each word is classified into one of
three classes, i.e. bold, italic, and regular. The experimental
results showed that it is possible to identify the typography
with an F-score of 0.90. This work is also based solely on
typographical differences and is therefore unsuitable for our
purpose.
 The rest of this paper's structure is as follows: A detailed
presentation of our approach and implementation of this
process is presented next. Following is the section in which
the experimental results of this process are presented. Finally,
conclusions from this process's implementation are outlined,
and proposals are made to develop further and exploit it.

3. Our Approach

Vocabulary parser (VP) is a component of a larger project that
offers an alternative way for kids or adults to learn English.
VP allows automatic parsing of contextual information
(vocabulary items including terms, explanation, examples

etc.) from OCRed documents. Input to VP is an RTF (Rich-
Text-Format) document, a ubiquitous output format for
documents processed by OCR software.

3.1. Image pre-processing and OCR
The following two subsections present the process of editing
the image before it is sent for OCR and the OCR process from
which the .rtf file is created, further analyzed.

3.1.1 Pre-processing
Before sending the image for OCR, it must first be edited to
improve some of its features to get the best possible result.
According to [23, 24], the critical elements that need to be
looked at and corrected in an image are contrast, pixel noise,
align of characters, color, and file type.
 The file type used is .jpg because of its popularity, as it is
usually the default type of image storage on most imaging
devices. However, other file types provide better quality, e.g.
TIFF, PNG [23].
 Although it is recommended to convert the image to black
and white, or grayscale, to get better OCR results [23, 24], we
don't alter it because we use the color of certain words as a
feature.
 We use the openCV framework to correct pixel noise and
contrast [25, 26]. Specifically, among blur, gaussian blur,
medianBlur, and bilateral filter, the latter was used to smooth
the image noise due to its better results in improving image
quality.
 Four algorithms [27, 28, 29, 30] were tested regarding the
alignment of the text lines. The algorithm described in [28]
provided the best results in terms of the alignment process's
speed. The original implementation code of the above
algorithms is available at [31].

3.1.2 OCR process
We need an OCR capable of working with Java. Out of the
available options, we highlighted the cases of ABBYY OCR
cloud SDK [32], Tesseract (Tess4J) [33] and Asprise [34].
According to [24], in the paid software category, ABBYY is
the best one, while in the free software category, it is
Tesseract. We eventually used ABBYY's service, but in the
future, we may even try Tesseract's free software, which has
excellent reviews, although it has a more complicated setup.

3.2. Publisher Specifications
VP strives to be as generic as possible. Attempts to deal with
the fact that the publishers of foreign language educational
books use different formats in vocabulary presentation. To
accommodate this variation, VP introduces the concept of
Publisher Specifications (P-Specs), which encapsulate the
exact vocabulary format followed by a specific book
publisher. Each publisher has its P-specs created outside of
the VP and is fed into the system before processing book
pages. For this reason, VP contains an internal Publisher
Specs Registry (PSR), which stores all the injected-into-the-
system P-specs. For the VP to process an OCR document
created from a publisher's book page, the P-specs for that
publisher must be in the registry.
 Having externalized the format specifications declaration
of each publisher, VP offers excellent flexibility and
extensibility. By correcting existing specifications, we can
enhance the VP's capabilities with zero or minor code
modifications. To introduce a new Publisher into the system,
we must carefully craft a new P-specs document reflecting the
vocabulary format and inject it into the registry. P-specs are
currently written in YAML format for the Proof of Concept.

Lefteris Moussiades, Ioannis Tsimperidis and Stavros Kanarakis/Journal of Engineering Science and Technology Review 14 (6) (2021) 28 - 34

 31

However, this is an implementation detail that could be
changed at a later stage. What's important here is that we can
add, change or remove P-Specs files to the system. Any new
addition to the registry will be loaded automatically, and the
subsequent processing cycle can leverage these new
specifications.

3.3. Multiple Passes
To make VP more user friendly, processing a document does
not require the user to provide information such as publisher
name. Instead, VP tries to recognize the publisher from the
document itself. The publisher's recognition is being achieved
by PSR, which holds all the details about each publisher's
vocabulary format. Initially, the RTF document is parsed

using a third-party library to extract the information needed
for further processing. After that, information takes the form
of a stream of strings representing various tokenized
vocabulary parts, where each part could be a single token like
a word or multiple tokens like a translation phrase or an
example sentence.
 The stream is then processed twice. In the first pass, the
system can recognize the format and mark P-Specs from the
registry as active. Once an active publisher has been
identified, a second pass consumes the streamed vocabulary
parts to recognize valuable vocabulary items. Validity relies
on the specific publisher's specifications context.
 A more elaborate diagram showing the complete VP high-
level architecture and use case flow is shown in Figure 1.

Fig. 1. High-level architecture VP diagram

3.4. Exposed API
As shown in the diagram of Figure 1, VP exposes three
different API segments:
• API to pass a new RTF document for parsing, which is
used by VP consumer application.
• API to register/unregister/modify Publisher
Specifications, used by <project-name> human operator – end
user.

• API to consume the inventoried vocabulary items after
successfully document processing, which is used by VP
vocabulary-consuming applications.

3.5. Vocabulary Format Variations
Vocabulary formats tend to be quite complicated. There may
be optional parts, and each term might have a slightly
different format between various publishers. We introduce a

Lefteris Moussiades, Ioannis Tsimperidis and Stavros Kanarakis/Journal of Engineering Science and Technology Review 14 (6) (2021) 28 - 34

 32

processing mechanism that relies on Directed Cyclic Graphs
(DCG) to cope with these problems. The construction of a
suitable DCG for each publisher comes from the P-Specs
context. For example, suppose that a publisher has the
following format for its vocabulary items where black color
represents mandatory parts whereas grey color represents
optional parts
TERM, GRAMMAR_TYPE, TRANSLATION, EXAMPLE,
DERIVATIVES
 Then, the system will create a DCG, as shown in Figure
2.

Fig. 2. DCG sample

 Processing will always begin from the TERM vertex and
move forward in the graph. In cases where there is more than
one potential transition to follow, we must resort to extra help
for correctly identifying the path. This is accomplished by
using regular expressions describing the character pattern that
each vocabulary part follows. These regular expressions exist
as part of the publisher specifications. Being able to
differentiate between different parts for each vocabulary item
in a specific publisher is quite challenging. P-Specs editor has
to ensure regular expressions are very accurate. Otherwise,
the system will fail to choose a correct path transition and thus
extract semantically valid vocabulary items. We have been
following this approach in the Proof of Concept. Still, if it
leads to high levels of complexity or functional errors (in case
of undetermined path selections) due to lack of robustness,
other methods should be investigated.

3.6. Publisher Specifications
Publisher specifications for the PoC are based on YAML
format. In the beginning, it contains publisher metadata, as
shown in Figure 3.

Fig. 3. Publisher metadata

 It contains specifications for each vocabulary part item as
found in the publisher (Figure 4). In this example, we can see
that we declare two sub-types of specifications. The
specifications reflecting RTF format-related data for a
specific vocabulary part and those reflecting structure-related
data (such as language, pattern etc.). We can see that the
regular expression pattern that will help us recognize the
vocabulary in the second pass of the processing is in the
tokenTypeSpecs section of the YAML file for each
vocabulary part.

Fig. 4. Specifications of each vocabulary part

 To construct an appropriate graph representing exactly all
the potential vocabulary part transitions, we have the
following YAML section, as shown in Figure 5.

Fig. 5. Structure for the creation of the graph

 These transitions will be parsed, and the corresponding
graph will be created upon Publisher Specs registration.

4. Experimentation

The dataset used to test the procedures described above
consists of 14 images taken from two different books. The
photos were taken indoors from a mobile phone with
automatic settings and under daylight conditions. Some pages
had handwritten notes. Also, some of the pages had the
characteristic curvature that exists when a book is opened on
a table. We mention this because this curvature distorts the
layout of the page content. The result is that the text lines are
not entirely aligned with each other, which negatively affects
accurate text recognition in some cases.
The OCR process is critical because the characters,
punctuation marks, and character formatting elements used
for IE must be correctly depicted in the RTF file. We initially
thought that some formatting elements, such as the size and
type of the font and its color, are essential in the analysis
process. Still, our tests so far have shown that it is not always
possible to obtain this information correctly during the OCR
process. For this reason, we currently focus only on features
that can be accurately and reliably obtained. When characters,
punctuation marks, and formatting features are correctly
embedded into the RTF file, the parsing process is considered
100% successful. On the contrary, when there are problems,
the process produces incorrect results. So far, the RTFs
produced at this stage are not capturing the content 100%
correct, so to do the parsing process correctly, we must correct
them manually.
 In the 14-page sample, 378 different lexicographical
terms are 100% successfully recognized and transformed into
a structured format (JSON type) in the manually corrected
content. Figure 6 shows a sample of the content of one of the
sample images, and Figure 7 shows a sample of the content of
an RTF file resulting from the OCR procedure, and Figure 8
shows the corresponding content in a structured form.

Lefteris Moussiades, Ioannis Tsimperidis and Stavros Kanarakis/Journal of Engineering Science and Technology Review 14 (6) (2021) 28 - 34

 33

Fig. 6. Content sample photo

Fig. 7. Content of RTF file

Fig. 8. Content of JSON file

 There are cases where we can only complete the parsing
process with regular expressions. However, this is not always
possible, so we use regular expressions in conjunction with
formatting text features to implement parsing. In this way, we
can do parsing to texts in which the words we have to
distinguish have similar characteristics regarding the type of
regular expression that they are recognized.

5. Conclusions and Further Development

The results from the experiments conducted in this sample of
the documents are very encouraging, demonstrating that the
IE in the manner described above is feasible, even though it
is still at an early stage.
 However, we need to perfect the process of creating RTF
files from images as our next step.
 Enriching the existing process with functions of finding
text that does not meet the specified specifications and
isolating it so that the parsing process can continue properly
on the remaining text is another step in creating a more
flexible and functional parsing process.
 Another step is to analyze sample texts from a sufficiently
large number of different publishers to disclose the standard
features. In this manner, we may create a general specification
file used to parse text by many other publishers.
 Another direction is creating a machine learning
algorithm that will analyze texts to develop the specification
file automatically. Creating an algorithm that merges the
information contained in different specification files into one
is another implementation step towards automating the IE
process we have described.

This is an Open Access article distributed under the terms of the Creative
Commons Attribution License.

References

1. R. Grishman, “Information extraction: Techniques and challenges”,

in M.T. Pazienza (eds) “Information Extraction: A Multidisciplinary
Approach to an Emerging Information Technology”, SCIE 1997,
Lecture Notes in Computer Science (Lecture Notes in Artificial
Intelligence), vol. 1299, Springer, Berlin, Heidelberg, 11 (1997). doi:
10.1007/3-540-63438-X_2.

2. S. Sarawagi, “Information extraction”, Foundations and Trends in
Databases 1(3), 261 (2007). doi: 10.1561/1900000003.

3. S. G. Small and L Medsker, “Review of information extraction
technologies and applications”, Neural Computing and Applications
25(3–4), 533 (2014). doi: 10.1007/s00521-013-1516-6.

4. C. C. Aggarwal and C. Zhai (Eds). “Mining text data”, Springer,
Boston, MA, (2012). doi: 10.1007/978-1-4614-3223-4.

5. J. Cowie and Y. Wilks, Information extraction (1996). Retrieved
from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.6480
&rep=rep1&type=pdf.

6. S. Soderland, “Learning information extraction rules for semi-
structured and free text”, Machine Learning 34, 233 (1999). doi:
10.1023/A:1007562322031.

7. F. Wu and D. S. Weld, “Open information extraction using
Wikipedia”, Proc. of the 48th Annual Meeting of the Association for
Computational Linguistics, Uppsala, Sweden, pp. 118–127 (2010).

8. A. Yates, M. Banko, M. Broadhead, M. Cafarella, O. Etzioni, and S.
Soderland, “TextRunner: Open information extraction on the Web”,
Proc. of Human Language Technologies: The Annual Conf. of the
North American Chapter of the Association for Computational
Linguistics (NAACL-HLT), Rochester, New York, USA, pp. 25-26
(2007).

9. P. M. Andersen, P. J. Hayes, A. K. Huettner, L. M. Schmandt, I. B.
Nirenburg, and S. P. Weinstein, “Automatic extraction of facts from
press releases to generate news stories”, Proc. of the Third Conf.
Applied Natural Language Processing, Trento, Italy, pp. 170-177
(1992) . doi: 10.3115/974499.974531.

10. M. E. Cali and R. J. Mooney, “Applying ILP-based techniques to
natural language information extraction: An experiment in relational
learning”, Working Notes of the IJCAI-97 Workshop on Frontiers of
Inductive Logic Programming, Nagoya, Japan, pp. 7-11 (1997).

11. D. Freitag, “Toward general-purpose learning for information
extraction”, Proc. of 36th Annual Meeting of the Association for
Computational Linguistics and 17th Int. Conf. Computational
Linguistics, Volume 1, Montreal, Quebec, Canada, pp. 404-408
(1998). doi: 10.3115/980845.980914.

12. N. Kushmerick, D. S. Weld, and R. B. Doorenbos, “Wrapper
induction for information extraction”, Proc. of 15th Int. Joint Conf.
Artificial Intelligence, Nagoya, Japan, pp. 729-737 (1997).

13. L. Ferreira, A. J. S. Teixeira, and J. P. Silva Cunha, “Medical
information extraction in European Portuguese”, in M. M. Cruz-
Cunha, I. M. Miranda, and P. Goncalves (eds) “Handbook of
Research on ICTs for Human-Centered Healthcare and Social Care
Services”, Vol. 2, IGI-Global, 607 (2013).

14. A. Uddin, R. Piryani, and V. K. Singh, “Information and relation
extraction for semantic annotation of eBook texts”, in S. M. Thampi,
A. Abraham, S. K. Pal, and J. M. Corchado Rodriguez (eds) “Recent
Advances in Intelligent Informatics: Proceedings of the Second
International Symposium on Intelligent Informatics”, Springer,
Cham, Switzerland, 215 (2014).

15. S. Wang, C. Liang, Z. Wu, K. Williams, B. Pursel, B. Brautigam, S.
Saul, H. Williams, K. Bowen, and C. L. Giles, “Concept hierarchy

Lefteris Moussiades, Ioannis Tsimperidis and Stavros Kanarakis/Journal of Engineering Science and Technology Review 14 (6) (2021) 28 - 34

 34

extraction from textbooks”, in C. Vanoirbeek and P. Geneves (eds)
“Proceedings of the 2015 ACM Symposium on Document
Engineering”, Association for Computing Machinery Inc., New
York, NY, United States, 147 (2015).

16. T. Gogar, O. Hubacek, and J. Sedivy, “Deep neural networks for
Web page information extraction”, in L. Iliadis and I. Maglogiannis,
(eds) “Artificial Intelligence Applications and Innovations:
Proceedings of the IFIP International Conference on Artificial
Intelligence Applications and Innovations”, Springer, Cham, 154
(2016).

17. V. Romero, A. Fornes, E. Vida, and J. A. Sanchez, “Information
extraction in handwritten marriage licenses books using the MGGI
methodology”, in L. A. Alexandre, J. S. Sanchez, and J. M. F.
Rodrigues (eds) “Pattern Recognition and Image Analysis:
Proceedings of the 8th Iberian Conference on Pattern Recognition
and Image Analysis”, Springer, Cham, 287 (2017).

18. E. Sassolini, A. F. Khan, M. Biffi, M. Monachini, and S.
Montemagni, “Converting and Structuring a Digital Historical
Dictionary of Italian: A Case Study”, Proc. of the eLex 2019 Conf.,
Sintra, Portugal, pp. 603-621 (2019).

19. C. Reul, S. Göttel, U. Springmann, C. Wick, K. M. Würzner, and F,
Puppe, “Automatic Semantic Text Tagging on Historical Lexica by
Combining OCR and Typography Classification”, Proc. 3rd Int.
Conf. Digital Access to Textual Cultural Heritage, Brussels,
Belgium, pp. 33-38 (2019).

20. A. Stein, “Preserving Semantic Information from Old Dictionaries:
Linking Senses of the Altfranzosisches Worterbuch to WordNet”,
Proc. 12th Conf. Language Resources and Evaluation, Marseille,
France, pp. 3063–3068 (2020).

21. O. Belyaev, I. Khomchenkova, J. Sinitsyna, and V. Dyachkov,
“Digitizing print dictionaries using TEI: The Abaev Dictionary
Project”, Proc. Seventh Int. Workshop on Computational Linguistics
of Uralic Languages, Syktyvkar, Russia, pp. 57-64 (2021).

22. A. Scius-Bertrand, S. Gabay, J. Janes, L. Petkovic, C. Corbieres, and
T. Clerice, “The BIR database – Identifying typographic emphasis in
list-like historical documents”, The 6th Int. Workshop on Historical
Document Imaging and Processing, Lausanne, Switzerland, pp. 37-
42 (2021).

23. Dynamsoft. Recommended Scan Settings for the Best OCR
Accuracy. Dynamsoft Document Imaging Blog.
https://blog.dynamsoft.com/insights/scan-settings-for-best-ocr-
accuracy/ [Accessed 27/03/2021].

24. Improve OCR Accuracy With Advanced Image Preprocessing.
https://docparser.com/blog/improve-ocr-accuracy/ [Accessed
27/03/2021].

25. OpenCV: Changing the contrast and brightness of an image!
https://docs.opencv.org/3.4/d3/dc1/tutorial_basic_linear_transform.
html [Accessed 27/03/2021].

26. OpenCV: Smoothing Images.
https://docs.opencv.org/3.4/dc/dd3/tutorial_gausian_median_blur_b
ilateral_filter.html [Accessed 27/03/2021].

27. J. J. Hull, “Document image skew detection: Survey and annotated
bibliography”, in J. J. Hull and S. S. Taylor (eds) “Document
Analysis Systems II”, World Scientific, 40 (1998). doi:
10.1142/9789812797704_0003.

28. A. Papandreou and B. Gatos, “A novel skew detection technique
based on vertical projections”, Proc. of 2011 Int. Conf. Document
Analysis and Recognition, Beijing, China, pp. 384-388 (2011). doi:
10.1109/ICDAR.2011.85.

29. W. Postl, “Detection of linear oblique structures and skew scan in
digitized documents”, Proc. of the Int. Conf. Pattern Recognition,
Paris, France, pp. 687–689 (1986).

30. Y. Chen and J. Wang, “Skew detection and reconstruction of color-
printed document images”, IEICE Transactions on Information and
Systems E84-D(8), 1018 (2001).

31. tanwirzaman/TextSkewDetectionAlgorithms.
https://github.com/tanwirzaman/TextSkewDetectionAlgorithms
[Accessed 28/03/2021].

32. ABBYY Help Center. Code samples
https://www.ocrsdk.com/documentation/code-samples/ [Accessed
28/03/2021].

33. Tess4J. http://tess4j.sourceforge.net/ [Accessed 28/03/2021].
34. Asprise. Java OCR and Barcode Recognition.

https://asprise.com/royalty-free-library/java-ocr-api-overview.html
[Accessed 28/03/2021].

