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Abstract—Research is constantly turning towards the 

development of image-based inspection tools that leverage deep 

learning models to automate surface crack detection in 

materials. Yet, most efforts involve color imaging which may 

lead to poor models’ performance in different lighting 

variations. Thermal images are more constant in changes of 

lighting, however, lack crispness of details. In this work, 

thermal-RGB image fusion techniques are investigated for 

accurate marble crack detection. The proposed method uses a 

Feature Pyramid Network (FPN) combined with three different 

backbone architectures and an augmented dataset of thermal-

RGB image pairs. The performances of different image 

modalities, i.e., RGB, thermal and fused images, are 

comparatively evaluated, to test the impact of image type, fusion 

techniques, deep networks, and feature extraction backbones, 

on the segmentation results, considering two different 

experimental evaluation approaches: a model-based and a 

backbone-based approach. Results verify the initial hypothesis 

that fused images are richer in spatial information. Model-based 

evaluation resulted in scores of up to 85.07% in terms of mean 

Intersection over Union (mIoU), which is 2.9% and 4.75% 

higher than by using separately the corresponding RGB 

(82.67% mIoU) and thermal (81.21% mIoU) images, 

respectively. Backbone-based evaluation highlighted 

seresnext50 as the optimal feature extraction network 

combination for FPN, reporting an mIoU of 87.04%. 

Keywords—image fusion, marble crack detection, deep 

learning, thermal images, computer vision, semantic segmentation 

I. INTRODUCTION  

Marble surface crack detection is crucial to preserve the 
high quality and aesthetic value of structures, and thus to 
prevent the risks of their early deterioration and natural decay 
through maintenance actions [1]. To date, marble surface 
crack detection is performed manually by experienced human 
inspectors. However, cracks may be too thin and difficult to 
be detected by observation, especially in randomly textured 
marble surfaces. Automated methods to facilitate or entirely 

replace conventional visual inspection of marble cracks, are 
therefore needed.  

Recent advancements in deep learning (DL) algorithms 
have gained considerable attention from both industry and 
academia towards automatic fault diagnosis [2]. Semantic 
segmentation based on deep neural networks has been 
proposed in numerous crack detection applications, proving 
that automatic DL-based methods could be highly efficient 
[3]–[5]. Most of the current semantic segmentation methods, 
use single-modal sensory data, mostly referring to red-green-
blue (RGB) images [6]–[8] or thermal images [9]–[11]. The 
sensing of RGB images is closer to human perception, while 
thermal cameras detect infrared radiation emitted from the 
surface of physical objects. Visible detection based on RGB 
images is more commonly used, due to the relatively 
affordable high resolution and contrast commercial cameras. 
However, in varying lighting conditions, RGB images may 
not be effective. Thermal detection is light invariant; yet, 
thermal cameras are comparatively pricey, while the images 
lack in crispness of detail, are of lower resolution and contrast. 
In order to take advantage of both modality-specific 
information, multimodal RGB-Thermal image fusion 
techniques were introduced [12]–[14]. Results indicated that 
multi-modal fusion can significantly improve the performance 
of DL segmentation models towards defects detection in 
materials [11].  

It should be noted here that DL-based marble crack 
detection is scarce in the literature; two reported works on 
marble crack detection exploit visible detection [1], [15], 
while thermal crack detection was only recently investigated 
[16]. However, RGB-Thermal fusion has never been applied 
for marble crack segmentation. 

To this end, this work investigates for the first time, the 
performance of RGB-Thermal image fusion techniques for 
marble crack detection. More specifically, 10 image fusion 
techniques (17 including their variations) are examined for 
pairs of RGB and thermal images. Fused images are used to 
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train a Feature Pyramid Network (FPN) with three different 
feature extraction backbone segmentation models. To gain 
new insights regarding modality-specific data, this work 
comparatively evaluates the performance of RGB, thermal, 
and fused images, following two different evaluation 
approaches: a model-based and a backbone-based evaluation.  

The rest of the paper is structured as follows. Section II 
discusses related works. Section III presents materials and 
methods, including the proposed approach, the used DL 
models and the examined fusion techniques and dataset. 
Experimental results and discussion are summarized in 
Section IV. Finally, Section V concludes the paper. 

II. RELATED WORKS 

Although much work has been done in DL-based crack 
detection for mainly structural materials such as concrete, 
crack detection in marble is particularly limited.  Only two 
reported works on DL-based marble crack detection 
exploiting visible detection [1], [15] can be found in the 
literature. In [15], five different convolutional neural networks 
(CNNs) were trained to detect cracks on RGB marble images: 

MobileNet ‐ v2, Xception, ResNet ‐ 18, Inception ‐
ResNet‐v2 and ResNet‐50, combined with three different 
optimization algorithms (stochastic gradient descent with 
momentum (SGDM), Adam, and root mean square 

propagation (RMSprop)). ResNet‐50 with the RMSprop 
optimizer resulted as the best architecture, providing a mean 
Intersection over Union (mIoU) of 67.2%. In [1], the authors 
conducted a performance evaluation of 112 DL segmentation 
model architectures, combining four models and 28 feature 
extraction backboneds, using RGB marble slab images. 
Results indicated the FPN model as the most efficient 
architecture, providing mIoU of 71.35%, and SE-ResNet as 
the most effective backbone family for the problem under 
study. Thermal marble crack detection was only recently 
investigated [16]. The authors comparatively evaluated 

several DL models, using both thermal and RGB images, 
towards evaluating the impact of different image modalities 
on the segmentation results. Experimental results showed FPN 
as best performing model architecture with 71.61% and 
68.07% mIoU, for RGB and thermal images, respectively, 
while the best performing backbone, was the efficientnetb4 
with 80.07% and 75.49% mIoU for RGB and thermal images, 
respectively. Yet, it should be noted that RGB-Thermal fusion 
has never been reported in the literature for marble crack 
segmentation. 

III. MATERIALS AND METHODS 

A. The Proposed Methodology 

All image types, fused, RGB and thermal were subjected 
to basic pre-processing before being processed by the DL 
model. RGB-only images were subjected to contrast-limited 
adaptive histogram equalization (CLAHE) [17] towards 
reducing noise amplification. Image embossing to raise crack 
patterns against the background was applied to thermal-only 
and RGB-thermal fused images, along with Principal 
Components Analysis color augmentation (Fancy PCA) [18]. 
Ten different fusion techniques were then tested. The input 
images were used to train and test a DL segmentation model. 
One semantic segmentation model, FPN, was combined with 
three feature extraction networks. Results included the output 
segmentation image and the numerical results in terms of 
well-known segmentation metrics and were evaluated based 
on two different approaches, a model-based evaluation and a 
backbone-based evaluation.  

The same process was repeated for fused, RGB and 
thermal images of the same cracks for comparative reasons. 
Therefore, a comparative study of thermal versus color versus 
RGB-thermal-fused imaging took place. Fig.1 illustrates the 
conceptual flow of the proposed methodology.

 

Fig. 1. The proposed methodology.  

B. RGB-Thermal Fusion Techniques 

Image fusion is a subject of interest in the research area of 
image processing. This is due to the fact that fused images can 
contain more comprehensive information, since they extract 

and combine effective features from multi-modal images. 
Visible and thermal image fusion is expected to maintain both 
the prominent textural details from RGB images and highlight 
the thermal targets from thermal images.  
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In this work, ten of the most recent and advanced 
algorithms in the field of image fusion were used to generate 
RGB-Thermal fused images based on their popularity and 
reported performances, and are compared:  

• Dual-branch Network (DualBranchFusion, 2021) with 
two feature strategies (addition strategy (Add) and 
channel strategy (Ch)) [19],  

• Infrared and Visible Image Fusion via Algorithm 
Unrolling (IVIF-AUIF-Net, 2021) with three fusion 
strategies (addition (Add), Average (Av), l1-attention 
addition (Norm)) [20],  

• Deep Image Decomposition (IVIF-DIDFuse, 2020) 
with three fusion strategies (Add, Av, Norm) [21],  

• Deep Learning-based encoder/decoder for fusing 
infrared and visible images (DeepDecFusion, 2021) 
trained with three different image datasets (medical 
images (Med dataset [22], TNO dataset [23], Road 
dataset [24])  [25], 

• Multi-Modal Feature Self-Adaptive Transformer 
(MFST, 2022) [26], 

• Dual-Discriminator Conditional Generative 
Adversarial Network (DDcGAN, 2020) [27], 

• Generative Adversarial Network for Infrared and 
Visible Image Fusion (FusionGAN, 2019) [28], 

• Classification Saliency-Based Rule for Visible and 
Infrared Image Fusion (CSF, 2021) [29], 

• Encoder–Decoder Network for Visible and Infrared 
Image Fusion based on Common and Unique Feature 
Decomposition (CUFD, 2022) [30], 

• Darkness-Free Infrared and Visible Image Fusion 
(DIVFusion, 2023) [31]. 

C. The Dataset 

The dataset [16] used in this work is derived from 38 
marble tiles with cracks of up to 2 mm wide from the marble 
quarrying company Solakis S.A. [32] in Drama, Greece. All 
tiles were photographed from 90 cm. For the high-resolution 
RGB images, it was used an MV _CA050- 10GM/GC digital 
camera with an MVLMF0824M-5MP lens. The thermal 
images were acquired after the tiles being heated with an 
infrared source by using a thermal heat-sensitive 206×156 
Seek Compact XR camera [33]. 

RGB and thermal images were paired, while the visible 
cracks were manually annotated on the RGB images with the 
LabelMe annotation tool [34]. The original dataset included 
a total of 24 pairs of RGB-thermal images. To comparatively 
test the influence of different modality input data, the 
performance of the DL model was tested separately on the 
RGB, thermal and fused images. RGB, thermal and fused 
images were augmented with random rotation (between 0 and 
90°), horizontal flip and vertical flip (both with 50% chance) 
concluding in 244 fused images. Five-fold cross-validation 
was applied to the final dataset to boost the confidence of the 
model’s performance. 

Fig. 2 indicatively illustrates a pair of images, RGB image 
and thermal image of the same marble crack, and the fused 
image resulting from the DIVFusion algorithm. 

  
(a) (b) 

 
(c) 

Fig. 2. Marble crack images: (a) RGB, (b) thermal, (c) RGB-thermal with 
DIVFusion fusion algorithm. 

D. DL Segmentation Models 

The DL segmentation models are obtained by the 
combinations of FPN [35] and three feature extraction 
backbone networks: efficientnetb4, seresnet50 and 
seresnext50. 

The selection of model and backbones is based on a recent 
comparative performance evaluation between state-of-the-art 
DL models on the same thermal and RGB input images of 
marble cracks [16]. Based on [16], the best performing 
segmentation model resulting from the conducted model-
based evaluation experiment and the three best performing 
feature extraction methods resulted from the backbone-based 
evaluation experiment, are selected.  

The aim is to investigate the comparative performance of 
different modality-specific input data, fusion algorithms and 
network architectures for marble crack detection. 

IV. RESULTS AND DISCUSSION 

All experiments in this work were implemented in Python 
3.9 engaging Tensor-Flow and Keras and run on an Nvidia 
RTX 3090 GPU. Thermal, RGB and fused images were 
resized into 256×256 pixels size to be input to the FPN model. 
Activation function was sigmoid, Adam optimizer was used 
and the loss function was the sum of focal and dice loss as 
suggested in [16]. The model was trained for 50 epochs with 
20 steps per epoch and the learning rate was 0.0005. The 75% 
of the FPN layers were frozen and the rest 25% were trainable. 
For better convergence, the three backbone networks were 
pretrained on ImageNet [21]. The same configuration was 
applied to all model combinations. 

All experimental results presented in this work are 
calculated after 5-fold cross-validation in terms of the most 
used semantic segmentation metrics: Inter-section over Union 
(IoU), Precision (P), Recall (R) and F1-score. 

A. Experimental Results 

a)  Model-Based Evaluation: In this approach, the 
average performance of the FPN model with the three most 
efficient [16] backbones (Efficientnetb4, Seresnet50, 
Seresnext50) are studied. Table I includes the performance 
results (mean values) after 5-fold cross-validation on the 
testing set. The Table includes the segmentation results for all 
images: RGB, thermal and fused for all fusion algorithms.  
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TABLE I.  MODEL-BASED SEGMENTATION RESULTS (% MEAN 

VALUES) FOR ALL IMAGE MODALITIES. BEST MEAN IOU IS MARKED IN 

BOLD 

Image Type Performance Metric 

Fused 

Fusion Algorithm IoU P R 
F1-

score 

DualBranchFusion_Add 81.76 91.84 88.32 85.32 
DualBranchFusion_Ch 80.67 93.15 85.99 84.16 

IVIF-AUIF-Net_Add 81.97 92.51 87.94 85.51 

IVIF-AUIF-Net_Av 82.25 92.93 87.93 85.75 

IVIF-AUIF-Net_Norm 81.32 92.69 87.14 84.82 
IVIF-DIDFuse_Add 80.04 90.89 87.31 83.57 

IVIF-DIDFuse_Av 82.95 93.58 87.88 86.43 

IVIF-DIDFuse_Norm 83.31 93.03 88.76 86.81 

DeepDecFusion_Med 83.57 92.57 89.47 87.15 
DeepDecFusion_TNO 82.45 93.70 87.25 86.05 

DeepDecFusion_Road 84.09 93.32 89.30 87.66 

MFST 79.91 91.14 87.06 83.63 
DDcGAN 83.58 91.97 90.15 87.26 

FusionGAN 83.71 92.04 90.12 87.56 

CSF 82.06 92.25 88.14 85.51 

CUFD 81.79 92.39 87.63 85.39 
DIVFusion 85.07 93.51 90.31 88.72 

RGB 82.67 94.07 87.37 86.14 

Thermal 81.21 93.29 86.35 84.33 

 
As it can be observed from Table I, RGB-Thermal fused 

images result in better performances compared to RGB and 
thermal, regardless of the fusion algorithm. The latter verifies 
the hypothesis that multi-modal fusion techniques are capable 
of improving the performance of DL defect detection models 
compared to single-modal images. More specifically, results 
highlight the DIVFusion as the most efficient fusion 
algorithm; marble crack detection accuracy is as high as 
85.07% mIoU, which is 2.9% and 4.75% higher than by using 
separately the corresponding RGB (82.67 % mIoU) and 
thermal (81.21% mIoU) images, respectively. 
DeepDecFusion_Road also reveals a high segmentation 
performance of 84.09% mIoU, followed by FusionGAN with 
83.71% mIoU and DDcGAN with 83.58% mIoU. Fig. 3 
illustrates an indicative segmentation result for FPN with 
DIVFusion. 

b) Backbone-Based Evaluation: FPN is evaluated for 
three different feature extraction backbones. Table II includes 
the performance results for each backbone and image 
modality: RGB, thermal and RGB-thermal (fused) for each 
fusion algorithm. 

Considering the backbone-based experimental approach, 
results in Table II once again indicate that multimodal images 
can lead the DL model to better segmentation performances. 
In all examined cases of backbones, the model resulted in 
better results for RGB-thermal images. Best IoU of 87.04 % 
was reported with Seresnext50 and fused images from the 
DIVFusion algorithm. 

Evaluating the overall performance of feature extraction 
backbones, efficientnetb4 reported a higher mIoU (83.19%) 
considering all fusion algorithms, compared to the other two 
backbones (83.97% for seresnext50 and 80.08% for 
seresnet50). Results verify the hypothesis that the selection of 
a specific feature extraction network can improve the 
segmentation performance of a model. Figure 4 indicatively 
illustrates segmentation results of the FPN model with fused 
images by DDcGAN of the testing set, with two different 
backbones. 

  
(a) (b) 

  
(c) (d) 

Fig. 3. Indicative results of FPN to fused testing images with  DIVFusion 
algorithm: (a) RGB image, (b) thermal image, (c) fused image and (d) 
segmentation result corresponding to IoU=97.25% with efficienetb4 (up-
left=ground truth image, down-left=fused image, up-right=output 
segmentation, down-right=output segmentation mask applied to the input 
image)). 

 
(a) 

 
(b) 

Fig. 4. Indicative results of FPN to fused testing images with  DDcGAN 
fusion (up-left=ground truth image, down-left=fused image, up-
right=output segmentation, down-right=output segmentation mask applied 
to the input image): (a) with efficientb4 backbone (IoU=96.20%), (b) with 
seresnext50 backbone (IoU=95.76%). 
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TABLE II.  BACKBONE-BASED SEGMENTATION RESULTS (% MEAN VALUES) FOR ALL IMAGE MODALITIES. BEST MEAN IOU IS MARKED IN BOLD 

Image Type 
Backbone 

Performance Metric 

Fused 

Fusion Algorithm IoU P R F1-score 

DualBranchFusion_Add 

Efficientnetb4 82.59 91.12 89.61 86.20 

Seresnet50 80.32 92.23 86.53 83.88 

Seresnext50 82.36 92.17 88.82 85.87 

DualBranchFusion_Ch 
Efficientnetb4 82.57 92.78 88.14 86.26 

Seresnet50 76.75 93.02 81.89 80.20 

Seresnext50 82.70 93.64 87.95 86.03 

IVIF-AUIF-Net_Add 
Efficientnetb4 81.94 93.57 86.44 85.58 

Seresnet50 81.42 91.44 88.56 84.87 

Seresnext50 82.54 92.51 88.82 86.07 

IVIF-AUIF-Net_Av 

Efficientnetb4 82.31 93.09 87.59 85.95 

Seresnet50 81.47 92.77 87.66 84.72 
Seresnext50 82.97 92.93 88.53 86.59 

IVIF-AUIF-Net_Norm 

Efficientnetb4 82.81 92.68 88.32 86.44 

Seresnet50 77.87 92.46 84.00 81.29 

Seresnext50 83.28 92.94 89.09 86.74 

IVIF-DIDFuse_Add 

Efficientnetb4 85.02 93.57 90.12 88.57 

Seresnet50 71.40 86.12 82.52 74.99 

Seresnext50 83.71 92.98 89.30 87.15 

IVIF-DIDFuse_Av 
Efficientnetb4 84.19 93.73 88.87 87.71 

Seresnet50 80.73 93.39 85.91 84.25 

Seresnext50 83.92 93.63 88.86 87.33 

IVIF-DIDFuse_Norm 

Efficientnetb4 83.89 92.82 89.42 87.48 

Seresnet50 80.62 92.09 86.63 84.19 
Seresnext50 85.41 94.18 90.22 88.76 

DeepDecFusion_Med 

Efficientnetb4 83.53 92.49 89.11 87.18 

Seresnet50 83.00 92.64 88.70 86.66 

Seresnext50 84.17 92.59 90.59 87.62 

DeepDecFusion_TNO 

Efficientnetb4 83.58 93.14 88.65 87.18 

Seresnet50 80.31 93.24 85.72 83.89 

Seresnext50 83.47 94.72 87.39 87.09 

DeepDecFusion_Road 
Efficientnetb4 84.07 93.30 89.11 87.67 

Seresnet50 83.10 93.84 87.78 86.74 

Seresnext50 85.10 92.82 91.00 88.58 

MFST 

Efficientnetb4 80.01 90.86 87.33 83.89 

Seresnet50 77.80 90.69 85.45 81.50 
Seresnext50 81.93 91.87 88.40 85.49 

DDcGAN 

Efficientnetb4 84.13 92.57 90.11 87.93 

Seresnet50 81.88 90.92 89.41 85.58 

Seresnext50 84.74 92.43 90.94 88.28 

FusionGAN 

Efficientnetb4 84.65 92.95 89.70 88.56 

Seresnet50 81.49 92.70 87.33 85.38 

Seresnext50 85.00 90.48 93.33 88.74 

CSF 
Efficientnetb4 82.00 92.55 87.36 85.51 

Seresnet50 80.85 92.05 87.31 84.34 

Seresnext50 83.34 92.16 89.74 86.69 

CUFD 
Efficientnetb4 83.02 92.67 88.42 86.75 

Seresnet50 78.24 92.95 83.50 81.77 

Seresnext50 84.11 91.55 90.98 87.64 

DIVFusion 

Efficientnetb4 84.01 94.78 87.95 87.88 

Seresnet50 84.16 91.93 90.90 87.87 
Seresnext50 87.04 93.83 92.09 90.41 

RGB 

Efficientnetb4 84.99 93.63 90.01 88.87 

Seresnet50 80.18 94.78 84.27 83.36 

Seresnext50 85.90 94.33 90.50 89.46 

Thermal 

Efficientnetb4 82.89 92.82 88.39 86.07 

Seresnet50 79.54 93.68 84.08 82.68 

Seresnext50 82.42 93.43 87.61 85.55 

B. Discussion 

In this work, the influence of the feature extraction 
backbone network and different image types (RGB, thermal 
and RGB-thermal) on the segmentation performance of a DL 
model was investigated. Furthermore, different RGB-thermal 
fusion algorithms were considered. Results from both 
conducted experimental approaches included in Tables I and 

II, reveal that for fused images the comparison metrics of all 
model configurations were of the same range for all fusion 
techniques, outperforming the corresponding results with 
RGB and thermal images.  

Since the cracks only refer to a small part of the marble 
slab, certain metrics may be affected by the sample imbalance 
between the target and background pixels. This is the reason 
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why considering four well-known metrics, including F1-
score, for the comparative results.  

The experimental results show that a model improves its 
marble crack segmentation performance using RGB-thermal 
images as input, especially when certain backbone networks, 
such as the seresnext50, are embedded in the FPN model. 

It should be noted here that only the RGB images in this 
work were taken under controlled conditions (diffusion box), 
while the thermal images were acquired separately in natural 
conditions. This is reflected in the results of RGB and thermal 
images, where the thermal image leads to lower segmentation 
performance compared to RGB. At this point, it should also 
be highlighted that the RGB camera was of high resolution, 
while the thermal camera was of low resolution, which can 
also be observed in Fig.3. In both cases however, only one 
marble crack was presented in each image. The latter refers to 
ideal image acquisition conditions, which poses a limitation in 
practice, such as the thermal camera being affected by the 
outside temperature or the RGB camera being affected by 
varying lighting conditions.  

An additional limitation was the finite number of marble 
crack images, including only 24 image pairs. Future work 
includes the acquisition of a large dataset of RGB and thermal 
image pairs of marble cracks, under different lighting 
conditions, and by using high resolution sensors. Moreover, 
augmentation techniques based on adversarial Generative 
adversarial networks (GANs) for image augmentation will be 
explored. 

Regardless of these limitations, the proposed approach is 
the first to present RGB-thermal image fusion comparative 
evaluation for marble crack detection, considering different 
image modalities, different feature extraction networks and 
two different experimental approaches. This work confirmed 
the hypothesis that RGB-thermal fused images can 
outperform the RGB-only and thermal-only DL models. The 
DL model is able to obtain additional insights provided by 
thermal images and become more robust, suitable for surface 
marble crack detection tasks in the production lines. 

V. CONCLUSIONS 

This work introduced a comprehensive comparison 
between ten different RGB-thermal fusion techniques and 
tested different image modalities as inputs to an FPN 
segmentation model with three different backbone 
combinations, towards marble crack detection. Multi-modal 
images were proven more efficient in all cases, considering 
two experimental approaches, a model-based and a backbone-
based evaluation approach. Results verified the hypothesis 
that fused images were richer in spatial information, resulting 
in accuracies of up to 85.07% in terms of mIoU, compared to 
RGB-only (82.67% mIoU) and thermal-only (81.21% mIoU) 
images. As the best performing backbone model was indicated 
the seresnext50, reaching mIoU of up to 87.04% with fused 
images. 

This study highlighted the efficiency of applying RGB-
thermal image fusion techniques towards marble crack 
detection. However, due to the limited size of the training 
dataset, the limited class of cracks, and the low-resolution 
thermal camera used in this work for the thermal image 
acquisition, it can be concluded that there is still room for 
further improvements, which will be investigated in future 
studies. 
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