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Summary

Information manipulation and cognitive load imposition make the production of

deceptive narratives difficult. But little is known about the production of deception,

and how its mechanisms may help distinguish truthful from deceitful narratives. This

study focuses on the measurement of keystroke dynamics while typing truthful and

deceptive eyewitness testimonies after a baseline assessment. While typing their nar-

rative, some participants would undergo an auditory cognitive load. Results show

that liars typed their story slower, and in less time than the truthful participants when

compared to their respective baselines. The imposition of the auditory cognitive load

showed adverse results, enhancing the amount of keystrokes and the time necessary

to type the narrative. Classification shows better results for deceptive narrative when

no auditory cognitive load is imposed. These results are discussed in terms of expan-

ding current models to include the cognition of linguistic production and writing

strategies.
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1 | INTRODUCTION

Several studies have shown that focusing on linguistic cues is more

efficient when it comes to detecting deception, although effect sizes

remain low (DePaulo et al., 2003; Hauch, Blandon-Gitlin, Masip, &

Sporer, 2015). Methods have been elaborated for the linguistic analy-

sis of deceit: Their accuracy ranges from above-average to notable

85% and higher classification rates (Masip, Bethencourt, Lucas,

Segundo, & Herrero, 2012; Mihalcea & Strapparava, 2009; Ott, Choi,

Cardie, & Hancock, 2011). Computerized means of detecting deceit

via linguistic cues allow for the extraction and analysis of many cues,

some of which varying in regards to a truthfulness factor (Hauch

et al., 2015). But the examination of linguistic deception detection via

natural language processing methods show a recurrent pattern: Most

studies use a dictionary-based approach such as the Linguistic Inquiry

and Word Count (e.g., Bond & Lee, 2005; Newman, Pennebaker,

Berry, & Richards, 2003). Yet, computer-assisted analyses may

encompass other ways of scanning the linguistic production of decep-

tion, such as behavioral keystroke dynamics.

2 | KEYSTROKE DYNAMICS AND
DECEPTION DETECTION

Biometric and behavioral cues of deception detection have recently

been studied, especially in the domain of identity deception

(e.g., Monaro et al., 2018; Monaro, Fugazza, Gamberini, & Sar-

tori, 2017; Monaro, Gamberini, & Sartori, 2017a, 2017b; Sartori,

Zangrossi, & Monaro, 2018). These behavioral approaches rely on two

types of measurements: mouse dynamics and keystroke dynamics.

Mouse dynamics allow researchers to measure reactions times, veloc-

ity, accelerations, or average and prototypical trajectories when

answering questions on a screen. A study focusing on the yes–no

response of identity thieves to unexpected questions showed that

these data combined with machine-learning classifications allow to

detect deceptive identities correctly in more than 90% of the cases

(e.g., Monaro, Gamberini, & Sartori, 2017b). Keystroke dynamics are

behavioral biometric measures relying on typing behavior. In brief, the

capture of data (i.e., typing behavioral cues) allows to extract unique

features (e.g., how one relies on the deletion key) and use these
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features for mapping (i.e., the comparison and matching of the unique

features against a large amount of data) and classification purposes

(Bhatt & Santhanam, 2013). In other words, when considering key-

stroke dynamics, what matters is not what one types but how it is

typed (for a review, see Crawford, 2010). Two different types of mea-

sures may be considered in keystroke dynamics: temporal and non-

temporal measurements (Tsimperidis, Arampatzis, & Karakos, 2018).

Temporal features encompass keystroke duration (i.e., how long a key

is pressed) and bigram latency (i.e., the time between two consecutive

keystrokes). Nontemporal features are commonly including total

amount of keystrokes, or corrections (amount of Deletes or Backspace

keystrokes used).

Keystroke patterns have been used for various purposes. A study

found that keystroke dynamics, even with scarce data, helped recog-

nize participants with an accuracy rate of 73% (Rybnik, Tabedzki, &

Saeed, 2008). Zahid, Shahzad, Khayam, and Farooq (2009) worked on

identification matters related to smartphones, and showed that the

combination of keystroke dynamics during Personal Identification

Number typing, and algorithmic classifications reduced error rates to

2%. Finally, keystroke patterns have also been studied to determine

the gender of a computer user. In a study, participants were asked to

record the everyday use of their computer while knowing that their

keystroke patterns were registered (e.g., Tsimperidis et al., 2018). This

method lead to interesting results: Relying on a radial basis function

basis network algorithm, gender accuracy reached 95.6%.

To our knowledge, only a few studies have focused on the decep-

tion of detection by analyzing typing behavior. Derrick, Meservy,

Jenkins, Burgoon, and Nunamaker Jr (2013) used a synchronous com-

munication chatbot that would ask questions, and require a spontane-

ous truthful or a deceptive answer. This study examining synchronous

computer-mediated-communication highlighted that deception

implied more edits and deletions, and a longer reaction time than

when truthful responses were typing. Another study focused on the

differentiation between truthful and deceptive online opinions of a

restaurant, gay marriage, and gun control (Banerjee, Feng, Kang, &

Choi, 2014). By combining timespan measurements, bag of words

(i.e., a statistical model where words are considered independently of

their order), editing behaviors, and using support vector machine clas-

sifiers, Banerjee et al. (2014) showed that the classifications were

overall better when taking all three measurements into account. Accu-

racy rose up to 94.3%. A few studies applied keystroke dynamics to

detect deceitful identities (Monaro, Spolaor, et al., 2017; Monaro

et al., 2018; Sartori et al., 2018). These studies demonstrated that liars

made more conceptual errors in their answers than truth-tellers, have

slower reaction times when answering questions, and were slower to

answer than truth-tellers. Accuracy rate reached 93.75% (Monaro

et al., 2018). Other similar experiments show accuracy rates above

90% (Monaro et al., 2019; Monaro, Spolaor, et al., 2017).

However, to our knowledge, no study has investigated keyboard

dynamics in the case of deceptive episodic allegations. This is an

important topic, as many agencies allow for the complainant to file a

report online. This means that a potentially malicious report may be

filed, and thus be costly for the agency. We thus focused in this study

on the keyboard dynamics of truthful and deceptive eyewitness

reports, and the imposition of an additional cognitive load during the

typing of the account.

3 | INFORMATION MANIPULATION,
DECEPTION DETECTION, AND AUDITORY
COGNITIVE LOAD

Information manipulation theory allows to conceptualize the produc-

tion of deceptive narratives (Markowitz, 2020; McCornack, Morrison,

Paik, Wisner, & Zhu, 2014). It relies on the Cooperative Principle and

Grice's maxims (Grice, 1989). A message emitted toward the receiver

is supposed to provide all the necessary information necessary to its

understanding (Cooperative Principle; Grice, 1989). If one is being

cooperative (and by extension, honest), the information emitted

should be sufficient (Quantity maxim), should provide supporting evi-

dence for one's claims (Quality maxim), be relevant to the context of

utterance (Relation maxim), and be clearly uttered (Manner maxim;

Markowitz, 2020). Covert violation of these maxims is then consid-

ered as deception. For instance, providing more information than one

has in one's possession, or not enough information, can be considered

as a violation of the Quantity maxim. These covert manipulations of

the available information imply an increase of cognitive load for the

deceiver (McCornack et al., 2014). Deception is a cognitively complex

task because one has to inhibit the truth, build up a new plausible

alternative reality and, simultaneously, monitor their own behavior

and the reactions of the addressee for feedback as most liars do not

take their credibility for granted (Gombos, 2006; Vrij, Fisher, &

Blank, 2017; Walczyk, Harris, Duck, & Mulay, 2014). Moreover, the

liar has to remember what has been said beforehand in order not con-

tradict previous accounts (Driskell & Driskell, 2019). This would be

the reason why small differences between truthful and deceptive nar-

ratives are observable.

The imposition of an additional cognitive load should help empha-

size discrepancies between truthful and deceptive statements

(Blandón-Gitlin, Fenn, Masip, & Yoo, 2014; Walczyk, Igou, Dixon, &

Tcholakian, 2013). This supplementary cognitive load increases the

complexity of the deceptive act, and thus accentuates differences

between deceptive and truthful narratives. The imposition of cogni-

tive load may for instance entail (a) asking the potential liar to narrate

his/her account from end to beginning (i.e., the reverse-order tech-

nique), (b) asking unanticipated question which cause the potential liar

to react fast in order not lose his/her credibility credit, (c) encouraging

for further details, as liars tend to provide less information than truth-

tellers, or (d) the imposition of a simultaneous second task to perform

while narrating one's account (Vrij et al., 2017).

One of the propositions explaining the effects of an additional

cognitive load on deceptive narrative relies on Baddeley's working

memory model (e.g., Baddeley, 2012) and provides insights as to how

cognitive load is being manipulated. It argues that the central execu-

tive part of the working memory model responsible of the overall con-

trol of action could undergo heavy perturbations in dual tasks. This is
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in line with Wickens's multiple resource theory (Driskell &

Driskell, 2019; Wickens, 2008). This theory posits that our attentional

resources are spread according to four dimensions. Each of these

dimensions is divided in two levels. These dimensions are: stages

(i.e., perceptual and cognitive activities vs. response), perceptual

modalities (i.e., visual vs. auditory, where cross-modal is easier to treat

than intra-modal), visual channels (i.e., resources dedicated to focal

vs. ambient vision), and processing codes (i.e., verbal vs. spatial). Two

tasks to occur simultaneously are considered as more demanding if

they require the same level of a dimension. For instance, focusing on

a visual stimulus while someone else speaks in the nearby environ-

ment (both perceptual, intra-modal tasks in during the memorization

stage) should be more difficult than focusing on a visual stimulus while

pressing on a button when the lights go off.

Sporer (2016) encourages researchers to focus on task demand

and working memory overload by using auditory stimuli. From a psy-

cholinguistic viewpoint, a phenomenon like the irrelevant speech effect

could provide evidence-based background and framework for the

auditory stimuli testing. The irrelevant speech effect is a linguistic per-

turbation that has been explored for decades (e.g., Baddeley &

Salame, 1986). Its deleterious effect has been noticed during encoding

(e.g., Knez & Hygge, 2002), serial recall (e.g., Baddeley &

Salame, 1986; Tremblay, Nicholls, Alford, & Jones, 2000), or episodic

recall (e.g., Enmarker, 2004). It has been found to be independent of

the one's age (e.g., Van Gerven, Meijer, Vermeeren, Vuurman, &

Jolles, 2007), or whether one pays attention or not to the distraction

noise (e.g., Elliott & Briganti, 2012). Some factors seem to make the

irrelevant speech effect more efficient, such as the fact that meaning-

ful words have a more disrupting effect than nonwords (e.g., Oswald,

Tremblay, & Jones, 2000). Negatively valenced words also seem to

have an important depleting impact on memory and performance

(e.g., Buchner, Mehl, Rothermund, & Wentura, 2006), and so would

also the specific foreknowledge of the stimulus that will be presented

(Röer, Bell, & Buchner, 2015).

Interestingly, Baddeley's working memory model also provides

explanations for the irrelevant speech effect. The irrelevant speech

effect would have a saturating effect on the phonological loop, one of

the subsystems that guides verbal structuring and articulation

(e.g., Baddeley & Salame, 1986). Studies show that the cognitive over-

load created by the irrelevant speech effect can be important. Large

effect sizes have been reported, including in episodic memory con-

texts (e.g., calculated Hedge's g = 1.34 for Enmarker, 2004). This cog-

nitive load has importance from a practical viewpoint. For instance,

medical students who would be distracted by an auditory stimulus

would have more trouble distinguishing the right from the left

(McKinley, Dempster, & Gormley, 2015). Similarly, when someone is

writing, the wording and translation of abstract concepts into words

would be impeded, which may lead to more errors and a certain delay

in answering written questions (e.g., Hayes & Chenoweth, 2006;

Levy & Marek, 1999).

To determine the effect of the irrelevant speech effect, keyboard

analytics may be of interest. When undergoing various types of cogni-

tive loads, such as time pressure, extensive text copying, or language

unfamiliarity in text copying, participants type generally less key-

strokes per second, and tend to pause more often as their fluency

drops (e.g., Vizer, Zhou, & Sears, 2009). This is coherent with the cog-

nitive load paradigm in deception detection research: Liars generally

need more time to react, type, or answer questions than truth-tellers

(e.g., Suchotzki, Verschuere, Van Bockstaele, Ben-Shakhar, &

Crombez, 2017). Pauses in typing behavior have been determined to

appear for two reasons: high cognitive demand and impression man-

agement (Schilperoord, 2002). Both explanations for pauses in typing

behavior fit with the concepts mentioned by Gombos (2006) and Vrij

et al. (2017) to justify the cognitive complexity of deception, namely

the decrease in cognitive capacity while one prevents the truth from

erupting, and the observation of one's own behavior to appear as

credible as possible. Consequently, there seems to be a tendency to

slowing down the process of writing while typing (i.e., less keystrokes

per second, cognitive pauses) and editing (i.e., the amount of Back-

spaces and Delete keystrokes, impression management pauses). More-

over, there seems to be a difference in typing behavior according to

the strength of the cognitive load. Recent research has highlighted

that text revision (i.e., the amount of Delete and Backspace strokes)

allowed to distinguish highly loaded tasks from lightly loaded tasks

(e.g., Brizan et al., 2015).

The influence of the auditory cognitive load on the production of

deceptive messages has not been studied yet. Some studies focused

on the impact of the irrelevant speech effect of typing behavior while

transcribing text. A study by Levy and Marek (1999) showed no effect

of the auditory cognitive load on one's typing behavior, concluding to

a lack of influence of verbal working memory perturbation on

mechanic typing behavior. But more recent work showed that the sat-

uration of the phonological loop could have an impact on typing

behavior (Chenoweth & Hayes, 2003; Hayes & Chenoweth, 2006;

Sörqvist, Nöstl, & Halin, 2012). In studies by Chenoweth and Hayes,

typing rate was reduced (i.e., less keystrokes per second), and errors

increased as the participants were actively saturating their phonologi-

cal loop by repeating the word ‘tap’ regularly (i.e., articulatory suppres-

sion). Their argument displayed as an explanation for their result

differences with Levy and Marek (1999) consists in the strength of

the cognitive load perturbation: articulatory suppression disrupts ver-

bal working memory more severely than the irrelevant speech effect.

However, there is evidence that the hearing of discourse while typing

is a disturbing phenomenon: the irrelevant speech effect was shown

to decrease the amount of words, characters, sentences, writing flu-

ency (i.e, characters/time), and propositions, while increasing the

amount of errors and the length of pauses (Sörqvist et al., 2012).

4 | RESEARCH QUESTIONS

4.1 | Hypotheses regarding the presence of deceit
on keystroke dynamics

Based on the aforementioned literature, we hypothesize the following

phenomena. Relying on the cognitive load approach to deception and

114 TOMAS ET AL.



the literature regarding cognitive load and keystroke dynamics, we

expect one's global typing behavior to be impeded by the presence of

deception when compared to the baseline (H1).

At a univariate level, when compared to a baseline measure, we

hypothesize that the deceptive narrative would be typed slower

than their truthful counterparts because the cognitive load induce

by deception would impede the writer's cognitive processes and

require more time to structure the narrative (e.g., Suchotzki

et al., 2017).

We also hypothesize, based on the observation that deceptive

narratives are generally shorter than their truthful counterparts

(Hauch et al., 2015), that liars would use less keystrokes than the

truthful participants. We thus computed the amount of keystrokes

comprised between the first stroke and the last one, included.

Liars also tend to perfect their narratives before delivering these

as they do not take their credibility for granted, and thus deploy

impression management techniques (e.g., Brizan et al., 2015; DePaulo

et al., 2003; Sporer, 2016). Moreover, the load imposed by the deceit-

ful act may lead them to make more mistakes and thus to correct their

narratives more often (e.g., Vizer et al., 2009). We thus hypothesize

that deceptive writers would correct themselves more by using the

Backspace and the Delete keys.

Moreover, as the cognitive load induced by the act of lying gener-

ally involves more thinking and more control over actions, we sup-

posed that deceptive texts would contain longer pauses (i.e., the

average pause length above 0.5 s, based on Vizer et al., 2009), and a

higher pause rate (i.e., the amount of pauses divided by the amount of

keystrokes, based on Vizer et al., 2009).

Finally, as far as the time taken to write one's narrative, two

hypotheses may be contrasted: either deceptive narratives take more

time, due to the inherent cognitive load of deception when compared

to truth-telling, or truthful narratives take more time to write, as they

contain more information and more details.1 The timing necessary to

write one's narrative will thus be considered as an exploratory

hypothesis. A precise description of the dependent variables is avail-

able in Data S1.

4.2 | Hypotheses regarding the presence of the
irrelevant speech effect on keystroke dynamics

We further hypothesized that the imposition of a cognitive load

(in this case, an auditory cognitive load defined as an irrelevant speech

effect) would deplete one's ability to type the required narratives. At a

univariate level, based on the cognitive load hypothesis and the litera-

ture regarding the impact of an auditory cognitive load on typing

dynamics (e.g., Sörqvist et al., 2012), we expect that narratives written

while undergoing the imposition of a auditory stimulus would, when

compared to their baselines, be typed slower, be written with less

keystrokes, be composed of more Backspace and Delete keystrokes,

need more time to be typed, contain longer pauses, and a higher

pause rate (H2).

4.3 | Interaction hypotheses

We expect an interaction between the presence of deception, and the

presence of cognitive load, as foreseen by current models (H3, based

on Sporer, 2016). In other words, one's typing abilities would be

depleted with the presence of an auditory cognitive load, and even

more so when the narrative is deceptive. We thus foresee that narra-

tives written while undergoing the imposition of a auditory stimulus

would, when compared to their baselines, be typed slower, be written

with less keystrokes, be composed of more Backspace and Delete key-

strokes, need more time to be typed, contain longer pauses, and a

higher pause rate, and that these effect would be emphasized if the

narratives considered are deceptive.

4.4 | Classification hypotheses

Classification models will be tested to determine which fits best to

the data gathered in this study, and to what extent it is able to classify

correctly the collected narratives. We hypothesize that deceptive nar-

ratives will be more accurately classified than truthful ones, based on

the baseline hypothesis (Feeley, deTurck, & Young, 1995). Deception

detection tasks based on common (but wrong) beliefs or random

guessing generally classify data accurately around the chance level

(i.e., 54% according to Aamodt & Custer, 2006). Our hypotheses and

measurements being based on the current scientific literature, we

expect our classification for deceptive and truthful narratives results

to be above this 54% overall accuracy threshold, with a higher accu-

racy score for deceptive narrative.

In terms of cognitive load, we expect results to show higher clas-

sification accuracy for narratives in the presence of cognitive load

than in its absence. More precisely, we expect to reach the same

levels of classification accuracy as highlighted by a recent meta-

analysis on the topic (i.e., around 70%; Vrij et al., 2017).

The rest of the article is structured as follows. We describe how

the data was acquired, and how the keystroke dynamics variables

were extracted. We then present the results for the four hypotheses

and show how keyboard dynamics may be helpful to classify deceitful

and truthful narratives by relying on different algorithms such as sup-

port vector machine (SVM), multilayer perceptron (MLP), radial basis

function network (RBFN), and simple logistic (SL). We then discuss

and conclude with an overview for further research, and how it may

apply to the needs of the field.

5 | METHOD

5.1 | Participants

Eighty French-speaking adult participants (34 female) took part in the

experiment. Age ranged from 18 to 59 years, with an average of

M = 26.34 years old (SD = 8.02 years). Seventy-three participants
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(91.25%) declared to be right-handed. Seventy-seven participants

were pursuing or had a Bachelor degree (96.25%), the three others

(3.75%) mentioning a higher degree. All of them reported using the

computer 1–2 hr a day. One of the participants failed to be recorded,

which brings the amount of participants to N = 79. We computed a

sample size estimation with GPower for special effects and interaction

for a MANOVA, with Cohen's f2 = .15 (i.e., a medium effect size

according to Cohen, 1988), α = .05 and power at 80%. It indicated

that 68 participants were necessary for this study. As more partici-

pants were available, and in order to avoid cherry-picking, we included

all participants' responses in our study.

5.2 | Design

The experiment utilized a 2 (Truthfulness: truthful vs. deceitful) × 2

(Cognitive load: present vs. absent) between-subjects design. Prior to

the experimental condition, all participants were all asked to type

about their day with as many details as possible from the moment that

they opened their eyes until the moment they arrived in the labora-

tory. This would constitute their baseline. Participants were after-

wards randomly assigned to one of the four conditions.

Regarding the truthfulness treatment, truthful people had to tell

what they had seen in a video that they were showed, and to provide

as many details as possible. Deceptive people were asked to remem-

ber as many details from a summary of the event, and to inflate the

story in order to create the false belief that they had really witnessed

the event. Similar instances of this summary protocol were used in

other studies (e.g., Logue, Book, Frosina, Huizinga, & Amos, 2015).

For the cognitive load treatment, during their report of the event,

participants wore a headset. If cognitive load was to be present, an

excerpt of the 2012 French presidential election debate would be

heard in the headphones. If no cognitive load was expected, no sound

would be heard.

Keystroke measurements included the average count of charac-

ters per second (i.e., the average amount of characters typed in 1 s),

the average count of keystrokes (i.e., the counting of all the pressures

and releases on the keyboard), the count of Delete keystrokes, the

count of Backspace keystrokes, the total elapsed time required to type

one's narrative, the average pause length (i.e., the average time that

the keyboard remained idle for more than 0.5 s), and the pause rate

(i.e., the amount of pauses as defined previously divided by the count

of keystrokes) to determine if truthfulness and/or cognitive load had

an effect on them.

5.3 | Procedure

Participants were approached by email lists available at the university,

and in class. They were informed that the experiment concerned the

assessment of eyewitness testimony and lasted around 30 min. Partic-

ipants entered the laboratory and were asked to read and sign the

informed consent form and the information form before entering the

room of the experiment. Meanwhile, the experimenter went into the

room, and launched the keylogger. The experimenter entered all the

sociodemographic data in the software. After saving the data, the

software opens a blank page in a text editor. Participants were then

brought into the room. The experimenter then explained that the par-

ticipant should write down everything that they remember of their

day, starting the moment they woke up to the moment of arrival in

the laboratory. After collecting this baseline, the participants were sat

in another part of the room for their next task.

Truthful participants would watch a video of an event lasting

90 s. This event described an encounter between a young man and a

young woman. After discussing a while, the young woman would

receive a text on her phone, and say that she had to leave. The vol-

ume was adjustable to suit the participant's hearing (and to later serve

as a landmark for the auditory cognitive load). For the Deceptive con-

dition, a summary of the video was given. It was brief enough for

them to know what happened without having many details. They had

90 s to remember as much from the summary as possible. Participants

in the deceitful condition were told after this that the girl went miss-

ing, and that they had to imagine that the authorities had a reward for

anyone who would have information about her disappearance.

All participants were then told that the girl was missing, that

everything they could remember would be useful, and that they would

have to produce a detailed account of the event. They were also told

that the police is looking for her, and that a reward would be given to

anyone providing new information. In the deceptive condition, partici-

pants were clearly told to inflate the data that they were given so that

if a police officer were to read their account, they would consider it as

credible. All participants then passed a nonverbal distraction task

(i.e., a maze solving task) during 3 min. This task was pre-tested to be

certain that it was not too easy (N = 5, M = 13 min 58 s, SD = 5 min

0 s). After this distraction task, all participants given two instructions.

The first one concerned the irrelevant speech effect. Participants

were given a headset to wear. Some of them (i.e., those who under-

went cognitive load) would hear an excerpt of the 2012 French presi-

dential election debate and if so, should ignore it as much as possible.

The excerpt was 10 min long, and put in a repeating loop to be certain

that the irrelevant speech effect would always be ongoing. The partic-

ipants who did not undergo auditory cognitive load would hear noth-

ing in the headset. Second, participants were asked to narrate with as

many details as possible the event. Finally, the participants were

debriefed and free to ask any question they wanted.

The next step consisted in the extraction of the features from the

log files. To do so, the second author developed a free program enti-

tled ‘ISqueezeU’.2 This software scans the raw data from IRecU and

extracts the desired features. The data was analyzed with JASP for

statistical inferences and the computation of the Bayes Factors.

5.4 | Data normalization

The goal of this study is to determine the typing behaviors of liars and

truthful persons compared to their baseline. We subtracted the results
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from the keylogger for the either truthful or deceitful narrative each

participant produced from the baseline. For instance, this means that

if a participant had 6,455 keystrokes during his/her baseline, and

6,435 keystrokes during his/her narrative, the positive difference

between both (i.e., 20 keystrokes) shows that the baseline had more

keystrokes than the treatment narrative. A negative result shows that

the narrative was written with more keystrokes than the baseline.

This linear data modification was applied on all the extracted cues:

For each observed variables, the keystroke results from the eyewit-

ness testimony were subtracted from the ones of the baseline.

5.5 | Data classification

Classifications were ran on Weka, a well-known and well-documented

open source software, containing dozens of machine-learning algorithms.

Results will be analyzed in terms of accuracy, F-score, and AUC.

The F-score is a combined measurement of precision and recall that

favors the algorithms with higher sensitivity (i.e., single-class effec-

tiveness of a classification model). The area under the curve (AUC)

measurement focuses on the area under the receiving operating char-

acteristics (ROC) curve. The ROC curve plots in a two-dimensional

space the true positive rate in the Y axis, and the true negative rate on

the X axis. The AUC measures the area under this curve, and com-

pares it to a straight diagonal with a value of .5, dividing the two-

dimensional space in two, representing chance level. In other words,

the faster and the higher the AUC of a classifier is above the diagonal,

the less its results are considered as chance.

6 | RESULTS

6.1 | Preliminary checks

A MANOVA was ran to examine the effect of the participant's sex on

the observed variables. No effect was found, F(7,69) = 1.06, p = .40,

Wilk's Λ = 0.89. Concerning the age of the participants, IRecU stores

them by age categories. No effect of the age category could was

observed, F(14,136) = 0.88, p = .59, Wilk's Λ = 0.82.

6.2 | Hypothesis testing

A MANOVA was conducted with truthfulness (truthful vs. deceitful) and

cognitive load (present vs. absent) as the between-subject factors. At the

multivariate level, a main effect for truthfulness was found, F

(7,69) = 3.12, p = .006. This implies an overall effect of the truthfulness

factor on keystroke measurements, in line with H1. A main effect of was

found for cognitive load, F(7, 69) = 1.60, p = .15, and did not yield support

to H2. No interaction was observable between truthfulness × cognitive

load, F(7,69) < 1, ns = .89. No support was thus found H3.

A one-way ANOVA showed a main effect was found for truthful-

ness on the difference in keystrokes per second between baseline and

narratives, F(1,77) = 6.36, p = .01, η2p = .08, BF10 = 3.51. This implies

that, compared to their baseline, liars typed their narratives slower

(M = 0.14, SD = 0.69, 95% CI [−0.08; −0.36]) than truth-tellers

(M = −0.19, SD = 0.48, 95% CI [−0.36; −0.04]). These results bring

support to H1. Truthfulness was also found to influence the difference

in total elapsed time between baseline and narrative, F(1,77) = 5.58,

p = .03, η2p = .06, BF10 = 2.15. Deceitful narratives, when compared

to their baseline, were typed in less time (M = −88,110.65,

SD = 225,720.21, 95% CI [−160,299.47, −15,921.83]) than their

truthful counterparts (M = 23,527.18, SD = 208,530.30, 95% CI

[−44,070.52, 91,124.88]), bringing support to H1. No support was

found for the other observed variables, all ps > .05, as shown in

Table 1.

Regarding the impact of cognitive load on the dependent vari-

ables, a one-way ANOVA showed that cognitive load had an effect on

the difference in the count of keystrokes between baseline and narra-

tive, F(1,77) = 4.69, p = .03, η2p = .06, BF10 = 1.73. The presence of

cognitive load seemed to affect the count of keystrokes contrary to

what was expected from H2: Compared to their baseline, participants

undergoing auditory cognitive load typed more (M = 1.74, SD = 556.77,

CI 95% [−178.74, 182.23]) than when no cognitive load was present

(M = 312.10, SD = 706.27, CI 95% [86.22, 537.98]). A Pearson correla-

tion was run in comparison with the Word Count function from the

linguistic inquiry and word count software (Pennebaker, Francis, &

Booth, 2001). It showed a strong correlation between the amount of

keystrokes typed and the word count, r = .96, p < .001, 95% CI [1.72;

2.17]. These results challenge H2, in which we hypothesized that

TABLE 1 ANOVA results for the
effect of truthfulness on keystroke
dynamics

Variables F p η2p Mtrue (SDtrue) Mdeceit (SDdeceit)

Keystrokes per second 6.38 .01** .08 −0.19 (0.48) 0.14 (0.69)

Count of keystrokes 3.31 .07 .04 25.8 (532) 289 (734)

Count of Backspace keystrokes 1.61 .21 .02 −15.3 (62.7) 6.58 (87.9)

Count of Delete keystrokes 1.00 .32 .01 2.97 (17.9) 0.125 (1.88)

Total time 5.58 .03* .06 23,527 (208,530) −88,111 (225,720)

Average pause length 0.08 .78 .00 45.7 (353) 77.6 (627)

Pause rate 0.62 .43 0.01 −0.01 (0.02) −0.02 (0.13)

*p < .05.

**p < .01.
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cognitive load would lower the amount of keystrokes in deceptive

narratives. Cognitive load was also found to influence the difference

in average typing time between baseline and narrative, F(1,77) = 5.25,

p = .02, η2p = .06, BF10 = 2.19. The presence of auditory cognitive load

was found to increase the time duration of the narratives relative to

their baseline (M = 23,740.79, SD = 184,952.26, 95% CI [−36,213.79,

83,695.38]) as compared to when no cognitive load was heard (M =

−88,318.93, SD = 244,829.50, 95% CI [−166,619.20, −10,018.65]).

No other effect was statistically significant for the other variables

observed in this study, all ps > .05 as shown in Table 2.

We then used classification techniques to determine whether the

participants' report of the event when compared to their baseline,

could be accurately identified in terms of truthfulness and presence of

cognitive load. Therefore, four different classification experiments

were performed, one for each different condition, examining whether

the way users typed differed from their baseline. The seven keystroke

dynamics features that were extracted were used for the classification

as independent variables. The four treatments in this study

(i.e., authentic/deceptive with/without cognitive load) were consid-

ered as the dependent variables for this machine-learning experiment.

For this purpose, classifiers such as neural networks, decision

trees, Bayesian classifiers, were selected based on their high accuracy

as reported in the literature in similar studies of keystroke dynamics

(e.g., Tsimperidis et al., 2018). Those who had the best results were

support vector machine (SVM), multilayer perceptron (MLP), radial

basis function network (RBFN), and simple logistic (SL), and only their

results will be presented. The term ‘best results’ refers to the perfor-

mance of the classifier in terms of accuracy (acc.), F-measure (F1), and

area under the ROC curve (AUC), as they are explained in Tsimperidis

et al. (2018). Classification results are displayed in Table 3.

TABLE 2 ANOVA results for the effect of cognitive load on keystroke dynamics

Variables F p η2p MwithCL (SDwithCL) MwithoutCL (SDwithoutCL)

Keystrokes per second 0.3 .87 .00 −0.01 (0.49) −0.03 (0.723)

Count of keystrokes 4.69 .03* .06 1.74 (557) 312 (706)

Count of Backspace keystrokes 1.49 .22 .02 −14.9 (65.4) 6.17 (86.1)

Count of Delete keystrokes 0.78 .38 .01 0.26 (3.13) 2.77 (17.16)

Total elapsed time 5.25 .02* .06 23,741 (184,952) −88,319 (244,830)

Average pause length 1.36 .25 .02 −5.34 (364) 127 (614)

Pause rate 0.73 .39 0.01 0.00 (0.02) −0.02 (0.13)

*p < .05.

TABLE 3 Best performance of
classifiers for truthfulness and deception
detection

Conditions Classifiers Acc. (%) 95% CI (LL–UL) F1 AUC

Truthful with cognitive load SVM 53.9 38.3–69.5 .537 .537

MLP 51.3 35.6–67.0 .506 .437

RBFN 43.6 27.9–59.3 .425 .459

SL 61.5 46.2–76.8 .612 .584

Truthful without cognitive load SVM 57.5 42.2–72.8 .568 .575

MLP 57.5 42.2–72.8 .573 .473

RBFN 57.5 42.2–72.8 .562 .177

SL 57.5 42.2–72.8 .562 .643

Deception with cognitive load SVM 52.5 37.0–68.0 .525 .525

MLP 47.5 32.0–63.0 .475 .477

RBFN 47.5 32.0–63.0 .472 .414

SL 55.0 39.6–70.4 .550 .598

Deception without cognitive load SVM 67.5 53.0–82.0 .665 .675

MLP 62.5 47.5–77.5 .625 .533

RBFN 70.0 55.8–84.2 .699 .633

SL 62.5 47.5–77.5 .625 .658

Abbreviations: Acc., accuracy for correct classification; AUC, area under the curve; CI, confidence inter-

val; F1, F-score; LL, lower limit; MLP, multilayer perceptron; RBFN, radial basis function network; SL, sim-

ple logistic; SVM, support vector machine; UL, upper limit.
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For each classifier, a hyperparameter tuning process was

followed, in order to find those values that lead to the best perfor-

mance. Moreover, to assess the performance of each classifier fairly,

the 10-fold cross-validation method was used. This divides the data

into 10 disjoint parts, uses 9 of them for training and the remaining

one for testing, in a round-robin fashion (Ramezan, Warner, &

Maxwell, 2019).

The best performances for truthful narratives with cognitive load

was achieved for SVM with a polynomial kernel and a C parameter,

representing the margin, of 2000.0. MLP reached best performance

while having learning rate (L) equal to 0.9 and momentum (M) equal to

0.8. RBFN achieved best performance by using 10 clusters for K-

means and a 0.1 minimum SD for the clusters. SL achieved best per-

formance with 500 as the maximum number of iterations for

LogitBoost (M), 100 as the last iteration of LogitBoost if no new error

minimum has been reached (H), and 65% for weight trimming (W).

In the case of truthful narratives without cognitive load, the best

performances were achieved by the SVM with RBFKernel (radial basis

function kernel) and C = 0.60, by MLP with L = 0.50 and M = 0.20, by

RBFN with three clusters and SD = 0.50, and by SL with M = 5,000,

H = 50, and W = 40%.

In the case of deceptive narratives with cognitive load, the param-

eters for best classification rates for SVM were the use of a

RBFKernel and C = 0.6; L = 0.5 and M = 0.5 for MLP; 10 clusters and

SD = 0.10 for RBFN; and M = 500, H = 50, and W = 30% for SL.

Finally, in the case of deceptive report without cognitive load, the

best results for SVM were achieved with a polynomial kernel, and

C = 11; for MLP with L = 0.30 and M = 0.50; for RBFN with two clus-

ters and SD = 2.60; and for SL with M = 500, H = 400, and W = 60%.

Accuracy results shows that the SL classifier reaches the best

classification rates for truthful narrative with and without cognitive

load imposition, with 61.5 and 57.5% namely. The SL classifier also

shows best classification rates for deceptive narrative with cognitive

load imposition with 55%. The RBFN classifier shows the best classifi-

cation rate for deceptive narrative without cognitive load imposition

with 70% accuracy. This brings partial support to our classification

hypothesis, as deception was indeed better detected in the absence

of cognitive load, while its presence allows for better classification of

truthful narratives.

Considering the F-score, the SL classifier performed better than

the other classifiers when cognitive load was imposed during truthful

and deceptive narratives (i.e., 0.612 and 0.550 namely). In the absence

of additional cognitive load, the MLP classifier performed better than

the other classification model at classifying correctly truthful narra-

tives, with an F-score of 0.573, whereas the RBFN classifier reached

an F-score of 0.6999 for the classification of deceptive narratives

written in the absence of cognitive load.

Results in this study show that for truthfulness with and without

cognitive load, and deception with cognitive load, the SL classifier per-

forms better than the other classification models, with AUC scores of

namely .58, .64, and .60. Regarding the classification of deceptive nar-

ratives without cognitive load imposition, the SVM classifier per-

formed better than the other classifiers, reaching .68 accuracy.

7 | DISCUSSION AND CONCLUSION

The goal of this study was to determine whether deception detection

could be operated in eyewitness testimonies by means of keyboard

biometrics. We investigated whether deception induced differences in

keyboard measurements when compared to a typed baseline. The

goal of the baseline was to account for typing variability among partic-

ipants, and allowed to take idiosyncratic measurements and typing

familiarity into account. We also imposed an irrelevant speech effect

in order to magnify the differences in keyboard measurements based

on the cognitive load paradigm. To our knowledge, this is the first

study to investigate keystroke dynamics in potentially deceptive eye-

witness testimonies with the inclusion of a cognitive load stimulus.

We found that the truthfulness of the participants had an impact

on their keystroke measurements. Deception involved typing slower

than the baseline, whereas truthful people typed faster. Moreover,

deceitful narratives were shown to be typed in less time. This provides

support to the cognitive load theory: As lying is more complex than

telling the truth, we can expect people to type slower and to want to

stop writing faster than truthful eyewitnesses as a strategy to cope

with cognitive load (Schilperoord, 2002; Vrij et al., 2017).

However, the induction of the irrelevant speech effect suggests

that the cognitive load theory might more nuanced than what is

claimed regarding its capacity at distinguishing liars from truth-tellers

(Sporer, 2016; Vrij et al., 2017). In our study, the imposition of cogni-

tive load was shown to increase the amount of keystrokes in narra-

tives when compared to a baseline. In other words, when participants

underwent the irrelevant speech effect, they typed more without cor-

recting more, which contradicts the predictions of the deception

detection cognitive load theory (Sporer, 2016; Vrij et al., 2017), the

irrelevant speech effect (Enmarker, 2004) and Wickens's (2008)

model. This brings support to the suggestion that cognitive load is not

monolithic, and that it should be investigated with more interest.

Finally, classification results show that, when compared to the

baseline, deception is better detected in the absence of cognitive load

imposition. The radial basis function network classifier shows that it is

possible to detect deception while relying on keyboard dynamics with

70% accuracy, and a F-score of 70%. These results are above the 54%

chance level established in the literature on deception detection

(Aamodt & Custer, 2006). However, when cognitive load is introduced

in order to increase classification rates, it has the adverse effect of

decreasing correct classification to levels barely at chance level. This

situation contradicts the findings of the meta-analysis ran by Vrij

et al. (2017), and is far from the 70% claimed in their paper.

To explain these results, we intend to provide two hypotheses

regarding cognitive load to be tested in the future. The first hypothe-

sis concerns the ambivalence of the cognitive load stimuli studied in

deception detection research. Most studies rely on the imposition of

stimuli that have a beneficial effect for the truth teller, and a negative

effect for the deceivers. For instance, the use of the reverse-order

technique has an ambivalent effect: It favors the truthful eyewitness

by allowing him/her to remember more details and provide new infor-

mation (e.g., Fisher & Geiselman, 2010), where as it impedes the
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structuration and production of deceptive narratives

(e.g., Gombos, 2006). Similarly, the invitation to pursue one's narrative

after being done is another ambivalent cognitive load stimulus: It has

been supported by experimental research as an interesting technique

to help the truthful person give more details (e.g., Bogaard, Meijer, &

Vrij, 2014). Conversely, it creates a burden for the deceiver who can-

not provide new information, and thus undergoes important cognitive

load (Vrij et al., 2017).

The cognitive load in this study does not favor the production of

a truthful narrative: The auditory cognitive load is a burden for both

the truthful and the deceptive participant. For this reason, we hypoth-

esize that the auditory stimulus creates noise, and prevents algorithms

from relying on keystroke dynamics. We thus suggest further research

in the nature of auditory cognitive load by manipulating the auditory

stimulus (language understandability, emotional valence, etc.). The

examination of the auditory cognitive load might give insights on the

theories currently established in deception detection research.

These suggestions for further research should include the linguis-

tic models of written production. If one relies on Sporer (2016), one

might want to extend the model by adding Kellogg's working memory

model of written production (Kellogg, Whiteford, Turner, Cahill, &

Mertens, 2013). This model deepens the potential hypotheses from

Sporer (2016), as it combines Baddeley's model (2012) with a tempo-

rally distributed model of the linguistic written production. This might

allow researchers to enhance their knowledge of word production,

and thus provide a more fine-grained analysis of how deception alters

its mechanisms. In this study, for instance, the irrelevant speech effect

was supposed to use resources simultaneously to other linguistic pro-

ductions. However, according the literature regarding the cognition of

writing, the irrelevant speech effect would only act on the translation

of concepts into words, which should impact the timing of the narra-

tive and keystrokes in a very particular way.

The second, nonexclusive, hypothesis concerns the strategies at

stake when confronted to cognitive load. The cognitive load theory

has been under scrutiny for a few years, as its mechanisms are to be

explored cautiously (e.g.,Blandón-Gitlin et al., 2014; Gombos, 2006). A

model relying on working memory principles was established, which

we tested in this study (Sporer, 2016). Although our results contradict

some hypotheses extracted from the model, we do not argue against

the model, but rather for an inclusion of writing production as men-

tioned above, and writing strategies one may deploy when writing

with high cognitive load. In other words, we argue that one has to

focus on the coping mechanisms of participants, and to a greater

extent, eyewitnesses when undergoing cognitive load. The differences

regarding the impact of the auditory cognitive load, although signifi-

cant, remained small, and the SD measurements show important dif-

ferences as to how one reacts in the presence of the irrelevant

speech effect. We argue that sensitivity to the irrelevant speech

effect is to be investigated in order to better understand the strate-

gies at the level of individual self-regulation and self-control, and thus

the coping mechanisms against cognitive load imposition (Blandón-

Gitlin et al., 2014; Gombos, 2006). Moreover, factors such as motiva-

tion to provide the expected effort and working memory capacity to

achieve the task independently from the auditory distraction should

also be taken into account (Carver & Scheier, 2012).

More research on keystroke dynamics applied to eyewitness nar-

ratives and deception detection is necessary. For instance, the evalua-

tion of idiosyncratic knowledge and use of computers, and how this

impacts one's ability to type truthful and deceptive accounts, would

be crucial. Indeed, one may expect skilled typers to experience less

cognitive load than typers who are not familiar with a computer

(e.g., Doubé & Beh, 2012). We argue that factors such as age, familiar-

ity with keyboard typing, and education should be further investi-

gated in the future. Moreover, the accuracy of memories should also

be investigated. Studies on false memories show that narratives may

be very vivid and clear despite being inaccurate (e.g., Lampinen,

Ryals, & Smith, 2008). The vividness of these memories might also

influence the typing prosody, and pass for truthful narratives while

being absolutely inaccurate. This might have important practical impli-

cations if one were to rely on keystroke dynamics to assess

credibility.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

ETHICS STATEMENT

All procedures performed in studies involving human participants

were in accordance with the 1964 Helsinki declaration and its later

amendments or comparable ethical standards. Informed consent was

obtained from all individual participants included in the study.

ENDNOTES
1 We wish to thank the reviewer who made this remark, and allowed us to

improve the quality of our manuscript.
2 The software can requested and hand-coded on demand from Ioannis

Tsimperidis.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available at

https://doi.org/10.17605/OSF.IO/M3RQ4.

ORCID

Ioannis Tsimperidis https://orcid.org/0000-0003-0682-1750

Samuel Demarchi https://orcid.org/0000-0003-1985-4754

REFERENCES

Aamodt, M. G., & Custer, H. (2006). Who can best catch a liar? Forensic

Examiner, 15(1), 6–11.
Baddeley, A. (2012). Working memory: Theories, models, and controver-

sies. Annual Review of Psychology, 63, 1–29.
Baddeley, A., & Salame, P. (1986). The unattended speech effect: Percep-

tion or memory? Journal of Experimental Psychology: Learning, Memory,

and Cognition, 12(4), 525–529.
Banerjee, R., Feng, S., Kang, J. S., & Choi, Y. (2014). Keystroke patterns as

prosody in digital writings: A case study with deceptive reviews and

essays. In A. Moschitti, B. Pang, & W. Daelemans (Eds.), Proceedings of

the 2014 conference on empirical methods in natural language processing

(EMNLP) (pp. 1469–1473). Doha, Qatar: Association for Computational

Linguistics.

120 TOMAS ET AL.

https://doi.org/10.17605/OSF.IO/M3RQ4
https://orcid.org/0000-0003-0682-1750
https://orcid.org/0000-0003-0682-1750
https://orcid.org/0000-0003-1985-4754
https://orcid.org/0000-0003-1985-4754


Bhatt, S., & Santhanam, T. Salem, Tamilnadu, India, IEE (2013). Keystroke

dynamics for biometric authentication—A survey. 2013 international

conference on pattern recognition, informatics and mobile engineering

(pp. 17–23). https://doi.org/10.1109/ICPRIME.2013.6496441.

Blandón-Gitlin, I., Fenn, E., Masip, J., & Yoo, A. H. (2014). Cognitive-load

approaches to detect deception: Searching for cognitive mechanisms.

Trends in Cognitive Sciences, 18(9), 441–444.
Bogaard, G., Meijer, E. H., & Vrij, A. (2014). Using an example statement

increases information but does not increase accuracy of CBCA, RM,

and SCAN. Journal of Investigative Psychology and Offender Profiling, 11

(2), 151–163.
Bond, G. D., & Lee, A. Y. (2005). Language of lies in prison: Linguistic clas-

sification of prisoners' truthful and deceptive natural language. Applied

Cognitive Psychology, 19(3), 313–329. https://doi.org/10.1002/acp.

1087

Brizan, D. G., Goodkind, A., Koch, P., Balagani, K., Phoha, V. V., &

Rosenberg, A. (2015). Utilizing linguistically enhanced keystroke

dynamics to predict typist cognition and demographics. International

Journal of Human-Computer Studies, 82, 57–68.
Buchner, A., Mehl, B., Rothermund, K., & Wentura, D. (2006). Artifi-

cially induced valence of distractor words increases the effects of

irrelevant speech on serial recall. Memory & Cognition, 34(5),

1055–1062.
Carver, C. S., & Scheier, M. F. (2012). Attention and self-regulation: A

control-theory approach to human behavior. New York, NY, USA:

Springer Science & Business Media.

Chenoweth, N. A., & Hayes, J. R. (2003). The inner voice in writing. Written

Communication, 20(1), 99–118.
Cohen, J. E. (1988). Statistical power analysis for the behavioral sciences.

Hillsdale, NJ: Erlbaum.

Crawford, H. (2010). Keystroke dynamics: Characteristics and opportuni-

ties. In 2010 eighth annual international conference on privacy, security

and trust (PST 2010) (pp. 205–212). New York, NY, USA: Institute of

Electrical and Electronics Engineers. Retrieved from 10.1109/PST.

2010.5593258

DePaulo, B. M., Lindsay, J. J., Malone, B. E., Muhlenbruck, L.,

Charlton, K., & Cooper, H. (2003). Cues to deception. Psychological

Bulletin, 129(1), 74–118. https://doi.org/10.1037/0033-2909.129.

1.74

Derrick, D. C., Meservy, T. O., Jenkins, J. L., Burgoon, J. K., &

Nunamaker, J. F., Jr. (2013). Detecting deceptive chat-based communi-

cation using typing behavior and message cues. ACM Transactions on

Management Information Systems (TMIS), 4(2), 1–21.
Doubé, W., & Beh, J. (2012). Typing over autocomplete: Cognitive load in

website use by older adults. In V. Farrell, G. Farrell, C. Chua, W. Huang,

R. Vasa, & C. Woodward (Eds.), Proceedings of the 24th Australian

computer–human interaction conference (pp. 97–106). New York, NY:

Association for Computer Machinery.

Driskell, T., & Driskell, J. E. (2019). Got theory? Multitasking, cognitive

load, and deception. In T. Docan-Morgan (Ed.), The Palgrave handbook

of deceptive communication (pp. 145–165). Cham, Switzerland:

Springer International Publishing AG.

Elliott, E. M., & Briganti, A. M. (2012). Investigating the role of attentional

resources in the irrelevant speech effect. Acta Psychologica, 140(1),

64–74.
Enmarker, I. (2004). The effects of meaningful irrelevant speech and road

traffic noise on teachers' attention, episodic and semantic memory.

Scandinavian Journal of Psychology, 45(5), 393–405.
Feeley, T. H., deTurck, M. A., & Young, M. J. (1995). Baseline familiarity in

lie detection. Communication Research Reports, 12(2), 160–169.
Fisher, R. P., & Geiselman, R. E. (2010). The cognitive interview method of

conducting police interviews: Eliciting extensive information and pro-

moting therapeutic jurisprudence. International Journal of Law and Psy-

chiatry, 33(5–6), 321–328.

Gombos, V. A. (2006). The cognition of deception: The role of executive

processes in producing lies. Genetic, Social, and General Psychology

Monographs, 132(3), 197–214.
Grice, P. (1989). Studies in the way of words. Cambridge, MA: Harvard Uni-

versity Press.

Hauch, V., Blandon-Gitlin, I., Masip, J., & Sporer, S. L. (2015). Are com-

puters effective lie detectors? A meta-analysis of linguistic cues to

deception. Personality and Social Psychology Review, 19(4), 307–342.
Hayes, J. R., & Chenoweth, N. A. (2006). Is working memory involved in

the transcribing and editing of texts? Written Communication, 23(2),

135–149.
Kellogg, R. T., Whiteford, A. P., Turner, C. E., Cahill, M., & Mertens, A.

(2013). Working memory in written composition: An evaluation of the

1996 model. Journal of Writing Research, 5(2), 159–190.
Knez, I., & Hygge, S. (2002). Irrelevant speech and indoor lighting: Effects

on cognitive performance and self-reported affect. Applied Cognitive

Psychology, 16(6), 709–718.
Lampinen, J. M., Ryals, D. B., & Smith, K. (2008). Compelling untruths: The

effect of retention interval on content borrowing and vivid false mem-

ories. Memory, 16(2), 149–156.
Levy, C. M., & Marek, P. (1999). Testing components of Kellogg's mul-

ticomponent model of working memory in writing: The role of the phono-

logical loop. In M. Torrance & G. C. Jeffery (Eds.), The cognitive demands of

writing: Processing capacity and working memory in text production

(pp. 25–41). Amsterdam, The Netherlands: Amsterdam University Press.

Logue, M., Book, A., Frosina, P., Huizinga, T., & Amos, S. (2015). Using real-

ity monitoring to improve deception detection in the context of the

cognitive interview for suspects. Law and Human Behavior, 39(4),

360–367.
Markowitz, D. M. (2020). The deception faucet: A metaphor to conceptu-

alize deception and its detection. New Ideas in Psychology, 59, 100816.

https://doi.org/10.1016/j.newideapsych.2020.100816

Masip, J., Bethencourt, M., Lucas, G., Segundo, M. S.-S., & Herrero, C.

(2012). Deception detection from written accounts. Scandinavian Jour-

nal of Psychology, 53(2), 103–111. https://doi.org/10.1111/j.1467-

9450.2011.00931.x

McCornack, S. A., Morrison, K., Paik, J. E., Wisner, A. M., & Zhu, X. (2014).

Information manipulation theory 2: A propositional theory of decep-

tive discourse production. Journal of Language and Social Psychology,

33(4), 348–377.
McKinley, J., Dempster, M., & Gormley, G. J. (2015). ‘Sorry, I meant the

patient's left side’: Impact of distraction on left–right discrimination.

Medical Education, 49(4), 427–435.
Mihalcea, R., & Strapparava, C. (2009). The lie detector: Explorations in the

automatic recognition of deceptive language. In Proceedings of the

ACL-IJCNLP 2009 conference short papers (pp. 309–312). Suntec, Sin-
gapore: Association for Computational Linguistics.

Monaro, M., Businaro, M., Spolaor, R., Li, Q. Q., Conti, M., Gamberini, L., &

Sartori, G. (2019). The online identity detection via keyboard dynam-

ics. In K. Arai, R. Bhatia, & S. Kapoor (Eds.), Proceedings of the future

technologies conference 2018 (pp. 342–357). Cham, Switzerland:

Springer.

Monaro, M., Fugazza, F. I., Gamberini, L., & Sartori, G. (2017). How

human–mouse interaction can accurately detect faked responses

about identity. In L. Gamberini, A. Spagnolli, G. Jacucci, B. Blankertz, &

J. Freeman (Eds.), Symbiotic interaction. Symbiotic 2016. Lecture notes

in computer science (Vol. 9961, pp. 115–124). Cham, Switzerland:

Springer.

Monaro, M., Galante, C., Spolaor, R., Li, Q. Q., Gamberini, L., Conti, M., &

Sartori, G. (2018). Covert lie detection using keyboard dynamics. Scien-

tific Reports, 8(1), 1976–1985. https://doi.org/10.1038/s41598-018-
20462-6

Monaro, M., Gamberini, L., & Sartori, G. (2017a). Identity verification using

a kinematic memory detection technique. In K. Hale & K. Stanney

TOMAS ET AL. 121

https://doi.org/10.1109/ICPRIME.2013.6496441
https://doi.org/10.1002/acp.1087
https://doi.org/10.1002/acp.1087
https://ieeexplore.ieee.org/xpl/conhome/5564352/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5564352/proceeding
https://doi.org/10.1037/0033-2909.129.1.74
https://doi.org/10.1037/0033-2909.129.1.74
https://doi.org/10.1016/j.newideapsych.2020.100816
https://doi.org/10.1111/j.1467-9450.2011.00931.x
https://doi.org/10.1111/j.1467-9450.2011.00931.x
https://doi.org/10.1038/s41598-018-20462-6
https://doi.org/10.1038/s41598-018-20462-6


(Eds.), Advances in neuroergonomics and cognitive engineering

(pp. 123–132). Cham, Switzerland: Springer.

Monaro, M., Gamberini, L., & Sartori, G. (2017b). The detection of faked

identity using unexpected questions and mouse dynamics. PLoS One,

12(5), e0177851. https://doi.org/10.1371/journal.pone.0177851

Monaro, M., Spolaor, R., Li, Q., Conti, M., Gamberini, L., & Sartori, G.

(2017). Type me the truth!: Detecting deceitful users via keystroke

dynamics. In Proceedings of the 12th international conference on avail-

ability, reliability and security. 60 (pp. 1–6)New York, NY: ACM.

Newman, M. L., Pennebaker, J. W., Berry, D. S., & Richards, J. M. (2003).

Lying words: Predicting deception from linguistic styles. Personality

and Social Psychology Bulletin, 29(5), 665–675.
Oswald, C. J., Tremblay, S., & Jones, D. M. (2000). Disruption of compre-

hension by the meaning of irrelevant sound. Memory, 8(5), 345–350.
Ott, M., Choi, Y., Cardie, C., & Hancock, J. T. (2011). Finding deceptive

opinion spam by any stretch of the imagination. In D. Lin (Ed.), Pro-

ceedings of the 49th annual meeting of the association for computational

linguistics: Human language technologies (Vol. 1, pp. 309–319).
Stroudsburg, PA: Association for Computational Linguistics.

Pennebaker, J. W., Francis, M. E., & Booth, R. J. (2001). Linguistic

inquiryand word count: LIWC2001. Mahwah, NJ: Erlbaum.

Ramezan, C. A., Warner, T. A., & Maxwell, A. E. (2019). Evaluation of sam-

pling and cross-validation tuning strategies for regional-scale machine

learning classification. Remote Sensing, 11(2), 185.

Röer, J. P., Bell, R., & Buchner, A. (2015). Specific foreknowledge reduces

auditory distraction by irrelevant speech. Journal of Experimental Psy-

chology, 41(3), 377–391.
Rybnik, M., Tabedzki, M., & Saeed, K. New York, NY, USA: IEE (2008). A

keystroke dynamics based system for user identification. In 2008 7th

computer information systems and industrial management applications

(pp. 225–230).
Sartori, G., Zangrossi, A., & Monaro, M. (2018). Deception detection

with behavioral methods. In J. P. Rosenfeld (Ed.), Detecting concealed

information and deception (pp. 215–241). San Diego, CA: Academic

Press.

Schilperoord, J. (2002). On the cognitive status of pauses in discourse pro-

duction. In T. Olive & M. Levy (Eds.), Studies in writing: Volume 10: Con-

temporary tools and techniques for studying writing (pp. 61–87).
Doordrecht, The Netherlands: Springer.

Sörqvist, P., Nöstl, A., & Halin, N. (2012). Disruption of writing processes

by the semanticity of background speech. Scandinavian Journal of Psy-

chology, 53(2), 97–102.
Sporer, S. L. (2016). Deception and cognitive load: Expanding our horizon

with a working memory model. Frontiers in Psychology, 7, 1–12.
https://www.frontiersin.org/articles/10.3389/fpsyg.2016.00420/full

Suchotzki, K., Verschuere, B., Van Bockstaele, B., Ben-Shakhar, G., &

Crombez, G. (2017). Lying takes time: A meta-analysis on reaction time

measures of deception. Psychological Bulletin, 143(4), 428–453.
https://doi.org/10.1037/bul0000087

Tremblay, S., Nicholls, A. P., Alford, D., & Jones, D. M. (2000). The irrele-

vant sound effect: Does speech play a special role? Journal of Experi-

mental Psychology: Learning, Memory, and Cognition, 26(6), 1750–1754.
Tsimperidis, I., Arampatzis, A., & Karakos, A. (2018). Keystroke dynamics

features for gender recognition. Digital Investigation, 24, 4–10.
Van Gerven, P. W., Meijer, W. A., Vermeeren, A., Vuurman, E. F., &

Jolles, J. (2007). The irrelevant speech effect and the level of interfer-

ence in aging. Experimental Aging Research, 33(3), 323–339.
Vizer, L. M., Zhou, L., & Sears, A. (2009). Automated stress detection using

keystroke and linguistic features: An exploratory study. International

Journal of Human-Computer Studies, 67(10), 870–886.
Vrij, A., Fisher, R. P., & Blank, H. (2017). A cognitive approach to lie detec-

tion: A meta-analysis. Legal and Criminological Psychology, 22(1), 1–21.
Walczyk, J., Igou, F., Dixon, L., & Tcholakian, T. (2013). Advancing lie

detection by inducing cognitive load on liars: A review of relevant the-

ories and techniques guided by lessons from polygraph-based

approaches. Frontiers in Psychology. 4 1–14. . Retrieved from. https://

www.frontiersin.org/articles/10.3389/fpsyg.2013.00014/full

Walczyk, J. J., Harris, L. L., Duck, T. K., & Mulay, D. (2014). A social-

cognitive framework for understanding serious lies: Activation-deci-

sion-construction-action theory. New Ideas in Psychology, 34, 22–36.
Wickens, C. D. (2008). Multiple resources and mental workload. Human

Factors, 50(3), 449–455.
Zahid, S., Shahzad, M., Khayam, S. A., & Farooq, M.. Heidelberg, Germany:

Springer-Verlag; (2009). Keystroke-based user identification on smart

phones. In International workshop on recent advances in intrusion detec-

tion (pp. 224–243).

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Tomas F, Tsimperidis I, Demarchi S, El

Massioui F. Keyboard dynamics discrepancies between

baseline and deceptive eyewitness narratives. Appl Cognit

Psychol. 2021;35:112–122. https://doi.org/10.1002/acp.3743

122 TOMAS ET AL.

https://doi.org/10.1371/journal.pone.0177851
https://www.frontiersin.org/articles/10.3389/fpsyg.2016.00420/full
https://doi.org/10.1037/bul0000087
https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00014/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00014/full
https://doi.org/10.1002/acp.3743

	Keyboard dynamics discrepancies between baseline and deceptive eyewitness narratives
	1  INTRODUCTION
	2  KEYSTROKE DYNAMICS AND DECEPTION DETECTION
	3  INFORMATION MANIPULATION, DECEPTION DETECTION, AND AUDITORY COGNITIVE LOAD
	4  RESEARCH QUESTIONS
	4.1  Hypotheses regarding the presence of deceit on keystroke dynamics
	4.2  Hypotheses regarding the presence of the irrelevant speech effect on keystroke dynamics
	4.3  Interaction hypotheses
	4.4  Classification hypotheses

	5  METHOD
	5.1  Participants
	5.2  Design
	5.3  Procedure
	5.4  Data normalization
	5.5  Data classification

	6  RESULTS
	6.1  Preliminary checks
	6.2  Hypothesis testing

	7  DISCUSSION AND CONCLUSION
	  CONFLICT OF INTEREST
	  ETHICS STATEMENT
	Endnotes
	  DATA AVAILABILITY STATEMENT

	REFERENCES


