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Abstract—Over the past decade, keystroke-based pattern
recognition techniques, as a forensic tool for behavioral
biometrics, have gained increasing attention. Although a num-
ber of machine learning-based approaches have been proposed,
they are limited in terms of their capability to recognize and
profile a set of an individual’s characteristics. In addition, up
to today, their focus was primarily gender and age, which seem
to be more appropriate for commercial applications (such as
developing commercial software), leaving out from research other
characteristics, such as the educational level. Educational level
is an acquired user characteristic, which can improve targeted
advertising, as well as provide valuable information in a digital
forensic investigation, when it is known. In this context, this paper
proposes a novel machine learning model, the randomized radial
basis function network, which recognizes and profiles the edu-
cational level of an individual who stands behind the keyboard.
The performance of the proposed model is evaluated by using
the empirical data obtained by recording volunteers’ keystrokes
during their daily usage of a computer. Its performance is also
compared with other well-referenced machine learning models
using our keystroke dynamic datasets. Although the proposed
model achieves high accuracy in educational level prediction of
an unknown user, it suffers from high computational cost. For
this reason, we examine ways to reduce the time that is needed to
build our model, including the use of a novel data condensation
method, and discuss the tradeoff between an accurate and a fast
prediction. To the best of our knowledge, this is the first model in
the literature that predicts the educational level of an individual
based on the keystroke dynamics information only.
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dynamics, machine learning, user profiling.
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I. INTRODUCTION

OOGLE has recently announced its ambitious plan to

eliminate passwords in favor of systems that take into
account a combination of sensor data such as typing pat-
terns, gait patterns, coarse or exact location, etc. Keystroke
dynamics, the patterns of rhythm and timing created when an
individual types, has been used as a tool by many studies for
the purpose of user authentication and user characterization.
The lion’s share of the research belongs to user authentica-
tion, since there are many studies that attempt to replace the
traditional authentication with passwords, which suffers from
many security and usability limitations.

Keyboard dynamics refers to the process of identifying the
unique patterns of an individual’s behavior with a computer-
based keyboard device. It is closely related to the study of
behavioral biometrics in digital forensics [1], [2]. Examples
include gait, speech patterns, signatures, and keystrokes.
Keystroke dynamics that measure an individual’s unique typ-
ing rhythms have been the subject of considerable research
over the past decade and their use as a tool for authentication
has shown promising results [3]. From a digital forensics per-
spective, the ability to identify the user and link him or her
to a set of activities performed within an information system
is of paramount importance. This is seen as an attribution
problem, and this practically relates to finding and correlating
circumstantial evidence ranging from digital artifacts found on
a suspect’s hard disk and to analyzing the user’s behavior from
observable metrics.

User behavior-based biometrics technologies provide
a number of advantages over traditional or physical biometric
technologies. The information can be collected nonobtrusively
or even without interfering with the users’ ongoing work or
consent. Collection of such behavioral data often does not
require any additional hardware and thus is cost effective as
well [4]. However, the efforts in the literature in profiling the
user’s characteristics using behavioral biometrics techniques
have been limited to gender or age only. Some highlights are as
follows. Yan and Yan [5] proposed a methodology that cate-
gorizes the authors of weblogs according to their gender. They
used 75000 blog entries and exploited the features of word
appearance frequency, the blog’s background color, font type
and style, punctuations, and emoticons. Their methodology
achieved the F-measure of 0.68. Mukherjee and Liu [6]
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developed a machine-learning-based system that classifies the
gender of blog’s author. They collected data from 3100 blogs
and classified the gender of authors using the features of
styling words (like “hmm” and “lol”), gender preferential
words (like “sorry,” words ending with “—able,” “—ful,” and
“—ous”) and sequence of consecutive part-of-speech tags that
satisfy some constraints. The system utilized naive Bayes (NB)
and support vector machine (SVM) classifiers and it achieved
the accuracy of 88%. Cheng et al. [7] also proposed a machine-
learning-based system that identifies the gender of author of
a text. This paper was motivated by the rapid increase in
crime on the Internet. Their dataset includes a collection of
texts from Reuters’ newsgroups and a collection of emails
of Enron employees. They studied hundreds of text features
and learned models using Bayesian-based logistic regression,
AdaBoost decision tree, and SVM. The SVM showed the best
results achieving 85% accuracy. Jones et al. [8] collected the
data of user profiles and search keywords from Yahoo.com and
learned a model using SVM-based classifier. Their SVM-based
model achieved 83.8% accuracy on the gender classification
and predicted the age of users with 63.9% accuracy. The study
of Rangel et al. [9] had a consolidated list of 21 candidate
models and classified the authors of English or Spanish texts
based on their gender and age. Using decision trees, SVM,
NB, and logistic regression models, they successfully classi-
fied the users into three age classes and the best accuracies
were 59% for English speaking users and 65% for Spanish
speaking users.

The aforementioned approaches, however, rely on com-
putational machine learning models and have limitations.
The most important of them is that all or some of the
features used to classify the users are limited to certain
phrases, words, N-grams, and the characters of a language.
Most of the approaches are incapable of dealing with the
heterogeneity of today’s Internet as they were tested on
English language only. It is reported that 25.9% of the
Internet users are native English speakers and the half of
websites worldwide are in English only [10]. Clearly, the
keystroke dynamics information used in this paper could
be seen as a remedy for such problem. Keystroke dynam-
ics is defined as the detailed and precise timing information
that describes when each key was pressed and when it was
released as a user types on a keyboard and is first intro-
duced in 1970s. Since then, many keystroke dynamics-based
methods have been proposed to replace the password-based
authentication.

The features used for analyzing the keystroke dynamics
can be categorized into temporal and nontemporal. As tem-
poral features are usually time-based, they are measured in
milliseconds. The most well-accepted temporal features are
keystroke-duration-based such as dwell time (the time a key
pressed) and flight time (the time between “key up” and
the next “key down”) [11]. Other temporal features include
the time associated with the trigrams and tetragrams [12].
Nontemporal features are nontime-based such as typing speed
(e.g., words per minute), the frequency of errors, error cor-
rection mode, which key is used when there are two or
more options (“Shift,” “Ctrl,” “Alt,” “Enter,” etc.) [13]. Other
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nontemporal features may include the time of day, applications
used, and the frequency using the keyboard.

In this context, this paper introduces a novel learning archi-
tectured model, randomized radial basis function network
(R’BN). R?BN can recognize and profile the educational
level of an individual who stands behind the keyboard. The
performance of the proposed model achieves a test error com-
parable to or better than the state-of-the-art machine learning
models. The contribution of this paper can be summarized as
follows.

1) R®BN, a novel machine learning model predicting the
educational level of users from keystroke dynamics
only. We compare our model with other well-known
machine learning models that have been used in the
domain. Our experimental results suggest that our model
is much more suitable model with regards to accu-
racy of predicting the educational level of the users.
Moreover, we discuss the ways to address the limita-
tion of the proposed model, namely the time needed to
build the model (TBM). In this regard, we discuss the
tradeoff of accuracy versus TBM when we: 1) use dif-
ferent iterations to build the model and 2) use different
sampling rates (100% to 10% sampling) in a proposed
data condensation method.

2) We create a dataset that can be used to study keystroke
dynamics that have been captured from free text over
long periods of time. To the best of our knowledge,
a similar dataset, i.e., one containing keystrokes recorded
from real users during the daily usage of their com-
puter for a long period of time instead of typing 2 to
3 sentences, is not available in the literature.

Having the ability to identify the educational level of an
individual who types a certain piece of text is of signifi-
cant importance in digital forensics. This holds true, as it
could be the source of circumstantial evidence for “putting
fingers on keyboard” and for arbitrating cases where the
true origin of a message needs to be identified. Moreover,
if the proposed method is included as part of a text com-
posing system, such as emails and instant texting, it could
increase trust toward the applications that use it and may also
work as a deterrent for crimes involving forgery. Also, accu-
rately extracting the typing patterns of users who attempt to
authenticate in a computing system that does not use the pass-
word scheme, like Google Abacus, effectively reduces types 11
errors. Finally, knowing the educational level of a user, could
improve targeted advertising as the focus on his/her interests
could be predicted easier. In this regard, we make the features
used from our dataset available to the research community,
hoping that we will inspire and aid more research in this
domain.

The rest of this paper is organized as follows. Section II
describes the data acquisition, the keystroke dynamics feature
extraction, and the design and construction of novel data con-
densation method and R?BN model. Section IIl summarizes
the results obtained by comparing the performance of the
proposed model and other nine well-known machine learning
models. Section IV provides the related work and Section V
concludes this paper.
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II. METHOD

Our aim is to recognize and profile the educational level of
an individual who stands behind a keyboard. To this end, our
approach consists of two successive phases. First, we collect
free text data from the volunteers who agreed to participate
in this venture of capturing their daily, real-life keystrokes
over a period of ten months. Then, we construct a novel
machine learning model, R?BN, predicting the educational
level of users from keystroke dynamics only. Finally, we pro-
pose a data condensation method in order to reduce the training
time of R?BN.

A. Keystroke Dynamics Dataset

For the data collection, two main issues have been con-
sidered. We first considered Internet heterogeneity and stan-
dardization. The heterogeneity of the Internet comes along the
issues in languages, locations, and structural and operational
varieties. The users may have received education from differ-
ent education systems around the world. They are particularly
different in terms of length of time and grade. We addressed
this by adopting the International Standard Classification of
Education (ISCED) [16], which aims to attain a standardiza-
tion and classification of different education systems around
the world.

The second is related to the keystroke dynamics data itself.
Data acquisition for the purpose of analysis of keystroke
dynamics requires deploying a keylogger on a volunteer’s
computing device. The volunteer may either be requested to
type a specific and fixed text, or a free text. The latter is
preferred as it integrates better with the subject’s regular typ-
ing activities and is less intrusive. However, the continuous
recording of a volunteer’s typing over an extended duration of
time introduces the risks of disclosing passwords and personal
messages to a third party. This is the main reason for the lack
of existence of such recorded free text data in the literature.

We designed and developed a free text keylogger, called
“IRecU” for the purpose of recording the user’s free text. This
can be installed into any Microsoft Windows-based device.
The IRecU is available at [17]. The volunteers were asked to
provide their educational information and the available lev-
els of ISCED-2011 to be selected were ISCED-2, ISCED-3,
ISCED-4, ISCED-5, ISCED-6, and ISCED-7-8. To mitigate
the effect of the aforementioned risks, the volunteers were
given an option to clear out what they have typed.

The IRecU creates a comma-delimited text (.txt) with the
following data for each volunteer:

75,#2014 — 05 — 02#, 47353342, “dn”
65, #2014 — 05 — 02#, 47353436, “dn”
75, #2014 — 05 — 02#, 47353441, “up”
73, #2014 — 05 — 02#, 47353529, “dn”
65, #2014 — 05 — 02#, 47353545, “up”
73, #2014 — 05 — 02#, 47353639, “up”
32, #2014 — 05 — 02#, 47353779, “dn”
32, #2014 — 05 — 02#, 47353904, “up”.

TABLE I
EDUCATIONAL LEVEL LOG FILES

Levels No. of Files ~ Percentage
ISCED-3 40 16.5
ISCED-4 15 6.2
ISCED-5 43 17.8
ISCED-6 85 35.1
ISCED-7-8 59 24.4

Total 242 100.0

The log files varied in size from 170 KB to 271 KB and contained data from 2,800
to 4,500 keystrokes. The class ISCED-2 is absent because there was no log file
from a volunteer with this educational level.

Each line represents a record of the volunteer’s action. The first
field represents the virtual key code of the key that the volun-
teer pressed or released. The second field indicates the date the
action took place in the format of yyyy-mm-dd. The third field
is the elapsed time since the beginning of that day (12:00 A.M.)
in milliseconds, and the fourth field is the action, “dn” for
key-press and “up” for key-release. We then extracted all the
features of keystroke dynamics from the text files. For exam-
ple, the duration of keystroke is calculated from the subtraction
of ms that correspond to the “up” action minus the ms that cor-
respond to the “dn” action, for the same key. Similarly, all the
digram latency representations are calculated. Examples are
press—press, release—press, press—release, and release—release
digram latency. The number of log files per educational level
is shown in Table I.

There are many useful features that can be extracted from
keystroke dynamics. Some of them are temporal, which are
usually time-based and measured in millisecond. The most
used features in the literature are keystroke duration, which is
the time that a key is kept pressed, and the digram latency,
which is the time between the pressing or releasing of a key
and the pressing or releasing of the next key (this creates four
combinations, down-down, down-up, up-down, and up-up). In
addition, there are other temporal features that have been used
or may be used, such as: 1) those which include the time asso-
ciated with the trigrams, tetragrams, etc., [18]; 2) the number,
the duration, and the frequency of pauses during typing [19];
and 3) the typing rate [20].

Except from temporal features, there are nontemporal fea-
tures that are nontime-based, such as: typing speed (e.g., words
per minute), the frequency of errors, error correction mode,
finger pressure on the keys [21], which key is used when
there are two or more options (e.g., “Shift” [22], “Ctrl,” “Alt,”
“Enter,” etc.) [23]. Other nontemporal features may include
the time of day, applications used, and the frequency of using
the keyboard.

In this paper, we use the most popular features of keystroke
dynamics, i.e., keystroke durations and digram latencies.
The reason for this is that for keystroke pressure features,
a dedicated pressure-sensitive keyboard is essential, which
contradicts with the main advantage of keystroke dynamics
biometrics. Moreover, the frequency of word errors, typing
rate, and duplicate keys features are merely practical for text
with large number of characters. Finally, trigrams, tetragrams,
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Fig. 1. Structure of the RBF neuron.

etc, are much rarer than monograms and digrams [24]. More
specifically, we preferred down—down digram latencies to
avoid negative values, because the second key may be pressed
or may even be released before the releasing of the first key.

The total number of features to consider could have been
almost 10 000 if we had used all the keystroke durations and
digram latencies assuming an average computer’s keyboard
has 100 keys. However, some keys and digrams are used rarely
or never. Based on our observation, we decided to include
42 keys and 120 digrams only. To extract features from the
log files, we developed “ISqueezeU” software, which reads
the text files created by “IRecU” and calculates the average
values of durations or latencies. The keys that have at least
ten appearances and the digrams with at least five appearances
have been taken into account only. The values for the rest keys
and digrams were marked as unknown.

The features from our dataset that were used in this paper
are available on [25].

B. Randomized Radial Basis Function Network

In this section, we design and modify the radial basis func-
tion neural network (RBFN), which was initially proposed
by Broomhead and Lowe [26]. RBFN shows faster conver-
gence, smaller extrapolation errors, and higher reliability. It
is built on a typical feedforward and three-layered architec-
ture with a single hidden layer, where the activation functions
for hidden units are defined as radially symmetric basis func-
tions phi, such as the Gaussian function. Training an RBFN
involves two phases: clustering like unsupervised on the hid-
den layer to determine N receptive field centroids in the
training data set and the associated widths, and supervised
on the output layer to estimate the connection weights w.
The output layer is straightforward as it implements a simple
multiple linear regression using the iterative gradient descent-
based training method. In each RBF neuron, it stored a vector
with as many dimensions as the number of the input layer
neurons. This vector is called “center vector” and is denoted
as c¢. Similarly, the input forms a vector of equal dimensions
and the Euclidean distance between the input and the center
vector is calculated. The calculated distance is then multiplied
by a coefficient b and finally the product is applied to a radial
basis function. This procedure is illustrated in Fig. 1.

The wavy line marks the boundaries of the RBF neuron,
the x1, x2, ..., X162 denote the components of the input vector
and the ¢y, c2, ..., c162 denote the components of the center
vector. The output of the RBF neuron is given by the outcome
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of a radial function on the Euclidean distance, i.e.,
YO @) = r(llx = cl). (1)

The index in (1) indicates that it is the output of the
ith neuron of the network and the double bar denotes the
Euclidean distance between vectors. Besides Euclidean dis-
tance, Mahalanobis distance could also be useful as it may
give better results in some situations [27]. The radial function
produces its largest response when the input vector is equal
to the center vector. On the contrary, as the input moves near
to the center, the response falls off exponentially as in

F(lle = el = eI, @)

In the third layer, the number of neurons is as many as
the number of the categories in which the data will be classi-
fied. This means that in our case there are five neurons in the
output layer. Each output node computes a sort of score for
the associated category. Typically, a classification decision is
made by assigning the input to the category with the highest
score. The score in every output neuron is computed by tak-
ing a weighted sum of the activation values from every RBF
neuron, as shown

N
. i (i 2
y(x) = Za@ o0V =] 3)

i=1

where N is the number of neurons in hidden layer, a? is
the weight assigned to the ith neuron, b is the coefficient
of the ith neuron, and ¢ is center vector of the ith neuron.
During the training process, it selects three sets of parameters:
the center vectors (') and beta coefficient (b?) for each of
the neurons, and the matrix of output weights between the
neurons and the output nodes (a®). Schwenker ef al. [28]
provided an overview of common approaches to train such
radial basis-based models. In short, they perform the k-means
clustering on their training set and the cluster centers are used
as the center vectors. The tradeoff in choosing the number of
neurons in hidden layer is that the more neurons the higher
the classifier’s accuracy, while the less neurons the shorter
the system’s training time. The average distance between all
instances in a cluster and the corresponding cluster center is
given by

1 m
s=-— ~]§||x./—cll 4)

where m is the number of instances belonging to this cluster,
x; is the jth instance in the cluster, and C is the cluster cen-
ter. Having the value s, the beta coefficient for the cluster is
calculated as

1
252
The output weights can be trained using the gradient descent
optimization technique. The training inputs are the values
obtained by the RBF neurons using the training set x. Gradient
descent runs separately for each output node (that is, for each
class in the data set).

(&)
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Finally, the modified radial basis neural network is
randomized [29]. A model that does not give satisfactory
results we call it “weak.” A strategy to enhance its performance
is to combine many weak learners (WL) in a way that the
output of each classifier can be aggregated to form a final
decision. To provide a training set to the next-level classifier,
weights are assigned to the instances, which determine the
probability that should appear in the next training set. This
probability is equal for every instance at the beginning of
the procedure and therefore the first-level classifier uses the
entire available training set. Instances with higher weights are
more likely to be included in the next training set, and vice
versa. The idea is to increase the weight on the misclassi-
fied instances so that these instances will make up a larger
part of the next classifiers training set, and hopefully the next
trained classifier will perform better on them. To explain how
this works, let assume that there is a binary problem (only two
classes) and every kth instance in the training set has the value
Pk, while gy is the correct output after the procedure. Because
the problem is binary, the g may have the values +1 and
—1. As mentioned earlier, weights are assigned to instances
of the training set, which are stored to a vector W. Initially,
these weights are equal for every instance and therefore all of
them participate in the training procedure of the first WL. The
weights are adjusted using the equation

. e~ Ararcfi(pi)
Wi (k) = ¢ ©)
Si

where W;(k) is the weight of the kth instance of the tth clas-
sifier training set, A; is a coefficient corresponding to the rth
classifier and indicates its importance to the final result, f;(px)
is the prediction of the rth classifier for the kth instance, and
S; is a normalize factor which ensures that the sum of the
instance weights is equal to 1. From above, it follows that the
qr - f:(pr) product will be positive when the prediction is cor-
rect and negative when it is incorrect. Because this product is
part of a negative exponent entails that when the prediction is
correct the weight of the instance will be decreased and when
it is incorrect will be increased. Moreover, the W; is a distribu-
tion because each weight W;(k) represents the probability that
the kth instance will be selected as part of the next training
set, and because every weight has value between 0 and 1 and
their sum is 1. Once the training of all WL is completed, the
output of the final classifier is given by

T
F(p) = sign (ZAt -ﬁ(p)) (7)

t=1

where T is the number of WL, f;(p) is the output of the rth
WL, which is +1 or —1 in the case being studied and A; is
the coefficient that was assigned to the rth WL. Therefore, the
final output is just a linear combination of all of the WLs and
the final decision is simply the sign of this sum. It should also
be noted that the A; coefficients, each of which is computed
after the training of the corresponding classifier as

1 1—81
A ==-In (8)
2 &

Algorithm 1 Pseudo Code of R2EN
1: procedure EDULEVELCLASSIF(Training Set x, Weak
Learner RBFN(., -), Iterations T)
Wi ={/n,...,1/n)
cfort=1to T
: fi= RPFN(x, W;)

2
3
4:
5. &= W) (ilx) # yi)
6
7
8

i=1
Ar=1/2-In((1 — &) /&)
fori=1ton

: Wiy (D) = Wi () - exp(—A; - qi fi(pi)) /St
9: end for
10: end for

T
11: return F(p) = sign(}_ A; - f;(p))
=1

12: end procedure

where & is the number of misclassifications over the training
set divided by the training set size. According to (8), when
the &; quantity approaches O the A, coefficient grows exponen-
tially, which means that better classifiers play more important
role to the final result. When the &, quantity is equal to 0.5,
i.e., the classifier accuracy is 50%, the A; is 0 and therefore
every classifier with accuracy no better than random guessing
is ignored. Finally, when the &, is over 0.5, the A; is nega-
tive, which means that the opposite decision of the classifier
is taken into account.

Algorithm 1 summarizes the above-mentioned operation of
RZBN procedure.

The parameters of Algorithm 2 are the training set x, the
WL, which is the RBFN, and the number of iterations 7', while
n is the training sample size. In each iteration the weighted
error &, the coefficient A;, and the weights W, are calculated.

C. Data Condensation Method

One of the problems in any classification procedure is that,
irrespective of the sophistication of the classifier in use, as the
dataset size increases so does the computational time. As with
any other classifier, the training time of R?BN is considerable
and highly depends on the number of iterations. One possible
solution is to build the classification model on a much smaller
representative subset of the original dataset. The aim is to
reduce the dataset size as much as possible with the minimum
loss of classifier performance.

To this end, this section proposes a new data condensation
method, which precedes R?BN as shown in Fig. 2.

The proposed filter-based random subfield data conden-
sation method consists of three stages. In the first stage,
assuming that B is a given training set, with N instances and
M features, then the dataset D is a concatenation of B and
the target values ¢. In simple random sampling (SRS), a sam-
ple R is selected from B uniformly with replacement following
a binomial distribution. Equivalent weights are given to all
samples in the dataset, so that any sample is chosen with
equal probability regardless of whether it was previously sam-
pled or not [30]. Although SRS simplifies analysis results, it
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Fig. 2. RZBN and data condensation method block diagram. D is stratified
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ferent training set, calculated by the previous neural network, performs the
classification.

suffers in performance when D is imbalanced, just as it hap-
pens in our case, where the class ISCED-4 occupies 6% of the
instances and class ISCED-6 occupies 35%. In the filter-based
random subfield data condensation, D is divided into a set of
strata according to the different target values in 7, and SRS
is performed on each stratum independently. In this context,
we use the proportional sampling approach, where the propor-
tion sampled from each stratum is equal in the sample as it is
in the original dataset. Thus, if D is highly imbalanced, then
higher sampling percentage would be given to the small target
stratum.

Upon sampling from D to produce R, we need to assess
whether this sample is a good representative or not. There
are two types of statistical tests, namely parametric and non-
parametric statistical tests. Parametric tests make assumptions
about the statistical distribution of the original dataset, while
nonparametric tests assume no underlying statistical structure
about the data. Thus, in order to maintain the generality in
this framework, the nonparametric preference is adopted.

In this paper, the test was performed on the most significant
features. The topic of feature subset selection has been well
studied in the literature, whereby a feature selection algorithm
consists of a search technique in conjunction with an eval-
uation metric. Here, a filter-based feature selection method,
which utilizes the information gain as an evaluation metric
with respect to the class value is used. It can be formalized as

IG = H(class) — H(class|Attribute) ©))
where H(x) is the entropy of x, given by

E
H(x) = — Z Pr(x[i])1n Pr(x[i]) (10)
i=1
where E is the length of the vector x and Pr(x[i]) is the
probability of the x[i].

The second stage is the construction of a Voronoi diagram
V(R) based on the subsampled dataset R. The Voronoi diagram
V(R) is the collection of all Voronoi regions VR(r,, R) whose
centers r, are instances in R. For a brief definition of Voronoi

diagram let x, y € %M. Then the bisector of x and y

Blr.y) = {lx—sl, = ly sl ls e ¥} (1)
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is the perpendicular line through the center of the line segment
Xy. Where A denotes the closure of some set A and ||.||, is the
p-norm distance, defined as

Iwll, = 12)

M
>
i=1
The half plane D(x, y) which is separated by the bisector is
D(x,y) = 13)

and the corresponding Voronoi region of x with respect to R
is written as

\M
{llx = sll, < lly = sl,ls € 9%}

VR, R) = () D(x.y). (14)
YER,y#x
The main method for computing a Voronoi diagram is by

the brute force approach. Thus, it could be defined as

VR(ry, R) = {||rnx||p < ] . V) # nlx € mM}. (15)

Variety of efficient algorithms exists to compute the Voronoi
diagram, such as the incremental construction, divide & con-
quer, and plane sweep. According to [31], the divide &
conquer algorithm and the plane sweep construct a Voronoi
diagram of n points within time O(n - logn) and linear space,
in the worst case, where both bounds are optimal.

Here, we used the Euclidean distance measure to calcu-
late the Voronoi regions. Nonetheless, it is worth mentioning
that variety of other distance metrics can be chosen depending
on the nature of the problem and the data. For example, for
continuously valued attributes, one can employ the Mikowsky,
Mahalanobis, Chebychev, Camberra, Quadratic, Correlation,
Chi-square, and many others. This stage is very crucial since
it reduces the complexity of the next clustering stage, where
we assume that data points that are far apart do not have an
effect on each other. As you may have noticed, this approach
allows the condensation process performed in parallel to the
different Voronoi regions.

In third stage, the original dataset D overlies over the
Voronoi diagram V(R). The goal of this stage is to fetch rep-
resentative centroids from each Voronoi region, for which the
collection of all centroids comprise the reduced dataset C. It
is remained to be decided which clustering algorithm must be
used and how many centroids per Voronoi region should be
fetched. By specifying as clustering validity measure that the
clustering algorithm should attempt to minimize the interclus-
ter distance measures and maximize the intracluster distance
measures, the VBGM clustering algorithm [32] is used to fetch
at most /U, /2 centroids from each nth Voronoi region, with
U, to be the M-dimensional data instances that constitute the
Voronoi region. In this paper, o is set to 0.01, which most
often results in selecting less than /U, /2. Although, the sam-
pling percentage is specified in the beginning of the algorithm,
the final sampling percentage most often ends up being slightly
less, where the highest worst case condensation percentage

PER, is
/U
PERy. = N — K,, Z -

(16)
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Algorithm 2 Pseudo Code of the Subsampling Framework
1: procedure REDUCEDATASET(Dataset D, Sampling
Percentage )

: Stage 1:

: R = StratifieldSampling(D, S)

: Stage 2:

V(R) = ConstructVoronoi(R)

: Overlay D onto V(R)

: Stage 3:

: while n <§ x length(R) do

9: C = C+VBGM(VR(ry, R),VU,/2)

10: end while

11: end procedure

where K, is the number of clusters. The three stages of the
filter-based random subfield data condensation are described
in Algorithm 2.

Algorithm 2 has two main parameters the Dataset D and
a sampling percentage S which takes values between O and 1.
In stage 1, a representative set R from D is selected by calling
a stratified random sampling. The number of selected instances
corresponds to the specified parameter S. In stage 2, based on
R, a Voronoi diagram V(R) is constructed by partitioning the
dataset space into L = S x N Voronoi regions € V(R). Finally,
in stage 3, the original instances from D is overlayed back onto
V(R) and VBGM clustering algorithm is used to fetch at most
VU, /2 centroids from each nthVoronoi region. Thus, now it
can be assumed that for each local region in the input space
represented by a center vector and there is a corresponding
scalar output into which it maps then the centroids can be
followed by convolution process as below.

In addition, for datasets of high dimensions, one might
employ cheap distance metrics. For instance, only the most
significant features can be chosen for the distance metric,
which in turn reduces the time latency of computing the
distances drastically. Moreover, one could rely on the construc-
tion of an approximate Voronoi diagrams as in the proposed
architecture. This stage is very crucial since it reduces the
complexity of the next clustering/learning stage. Another note
that merits a mention is that this framework allows for parallel
condensation to be performed to the different Voronoi regions.

III. MODEL EVALUATION AND ANALYSIS

In this section, we evaluate and compare the perfor-
mances of the proposed R’BN model and other well-
known nine machine learning models: 1) radial basis func-
tion network (RBFN); 2) multilayer perceptron (MLP); 3)
SVM; 4) random forest (RF); 5) logistic model tree; 6) NB
tree (NBTree); 7) best first tree; 8) NB classifier; and 9) sim-
ple logistic. The models are tested on the benchmark keystroke
dynamics dataset in terms of: 1) the model accuracy (Acc.),
which is the percentage of correctly classified instances; 2)
the stability (o), which is the measure of deviation of all
the model accuracies over tenfolds; and 3) time complex-
ity (TBM), which is the CPU time required to build the
model.

More specifically, to assess the performance of the proposed
model fairly with regards to the above-mentioned criteria (i.e.,
accuracy, stability, and time complexity), the well-referenced
cross-validation is used [33]. In the tenfold cross-validation,
which is the most commonly used version, the dataset is
divided into ten subsets. Each time, one of the 10 subsets is
used as the testing set and the other 9 subsets are put together
to form a training set. Then, the average error across all ten tri-
als is computed. The advantage of this method is that the way
the data gets divided matters less. Every data point gets to be
in a testing set exactly once, and in a training set 9 times.

Moreover, to validate the quality of the proposed model, the
F-score and ROC index are computed and provided. For the
F-score, we calculated the harmonic mean of the specificity
and sensitivity [34], where its value falls in the range between
0 and 1. Accuracy is measured by ROC index, the area under
the ROC curve [35].

However, as the ISCED-4 class makes only 6.2% of the
whole dataset and the learning models rarely see the samples
and adjust the weights, increasing the probability of unreliable
results (i.e., imbalance effect), ISCED-3 and ISCED-4 classes
are merged forming the new ISCED-3-4 classes. Now the
dataset has the following four classes: 1) those who do not
have tertiary education; 2) those who have short cycle tertiary
education; 3) those who have university degree; and 4) those
who have education higher than tertiary. Again, ISCED-3-4
and ISCED-5 are merged to form a new ISCED-3-4-5 class
dataset. This balances up the number of samples in each class
for fair model evaluation and comparisons. The experimental
results are summarized in Table II.

RZBN excels all other models in terms of Acc., in 3-,
4-, and 5-classes datasets, about 8% improved from its base
model (RBEN). More specifically, R?BN achieves an accu-
racy of 86.8% with 5-classes dataset. Similarly, with 4-classes
dataset, the difference between the accuracies of the R?BN
predictions and the baseline is over 62%, while in 3-classes
case this difference is over 54%. In addition, RZBN becomes
the second in the stability behind the RBFN model, achieving
7.9£1.3 deviation of all the model accuracies over tenfolds.
Moreover, RZBN has the greatest ROC index, over all the
other models, reaching a value only 0.043 less than the opti-
mum 1.0 and followed by RF and MLP which have 0.904 and
0.886, respectively. However as our results suggest, almost
all the other models require less training time (see Table II).
Specifically, R>BN’s is only better than MLP and NBTree
with regards to TBM. It requires considerably more time to
learn a model than NB (approx. 3075x), SVM (approx. 88x),
RBFN (approx. 41x), and RF (approx. 8x).

Fig. 3 visualizes the experimental results of accuracy for
the ten models, over three different datasets. As suggested by
our experimental results, RZBN, seems to be a much more
suitable model, achieving 88.43% Acc. We believe that the
utility of R2BN can be confirmed with these experimental
results, however, there is a drawback that should be addressed.
Specifically, it is obvious that learning an optimal model for
RZBN is still time consuming. We performed additional exper-
iments on 3, 4, and 5 classes. As shown in Table III, the
weights were converged over 70 iterations, which we believe
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TABLE 1T
RESULTS OF MODEL COMPARISONS ON DIFFERENT CLASSES

Model Class Acc. g ROC TBM
3 88.43 9.20 0.959 73.82
R:BN 4 87.19 7.73 0.949 49.09
5 86.78 6.61 0.966 67.70
Avg. 87.6+0.8 7.9+1.3 0.95740.008 61.5+12.4
3 80.99 8.70 0.880 1.26
RBFN 4 77.27 5.19 0.860 1.67
5 79.34 4.60 0.885 1.58
Avg. 79.1+£1.9 6.742.1 0.87340.013 1.540.2
3 75.62 7.58 0.898 77.27
MLP 4 67.77 7.67 0.874 85.82
5 69.83 14.08 0.876 80.73
Avg. 717439  10.8432  0.886+0.012 81.5+4.3
3 69.83 5.49 0.802 0.61
SVM 4 63.22 12.23 0.808 0.49
5 64.88 10.82 0.839 0.90
Avg. 66.5+3.3 8.8+3.4 0.820+0.018 0.7+0.2
3 79.34 9.32 0.899 5.80
RF 4 71.49 9.36 0.896 9.50
5 71.49 11.67 0.911 6.46
Avg. 754439  105+1.2  0.904+0.008 7.7+1.9
3 71.07 10.53 0.862 443
LMT 4 67.77 8.06 0.847 3.38
5 62.40 10.56 0.817 6.68
Avg. 66.7+4.3 9.3+1.3 0.840+0.023 5.0+1.7
3 66.12 12.73 0.771 132.19
NBTree 4 60.74 8.41 0.795 102.73
5 61.16 10.26 0.783 107.58
Avg. 634427  10.6+22  0.783+0.012  117.5+14.7
3 71.90 7.95 0.802 13.53
BFTree 4 59.50 11.00 0.724 1.30
5 58.68 8.56 0.750 2.50
Avg. 65.346.6 9.5+1.5 0.76340.039 7.446.1
3 57.25 10.12 0.699 0.01
NB 4 51.24 10.81 0.712 0.03
5 55.37 8.10 0.722 0.02
Avg. 54.243.0 9.5+1.4 0.71140.012 0.0240.01
3 69.83 8.01 0.834 2.04
SL 4 66.53 11.84 0.824 1.67
5 55.79 8.10 0.795 5.63
Avg. 62.8+7.0 9.9+1.9 0.81540.020 3.7+2.0

RBN (30 clusters for K-Means, 0.9 minimum standard deviation for the clusters
and 55 iterations for adaptive boosting, for 5-classes dataset, 30 clusters for K-
Means, 1.9 minimum standard deviation for the clusters and 45 iterations for adap-
tive boosting, for 4-classes dataset, and 60 clusters for K-Means, 1.0 minimum
standard deviation for the clusters and 70 iterations for adaptive boosting, for 3-
classes dataset), RBFN (70 clusters for K-Means and 1.0 minimum standard devia-
tion for the clusters, for 5-classes dataset, 100 clusters for K-Means and 1.0 mini-
mum standard deviation for the clusters, for 4-classes dataset, and 40 clusters for
K-Means and 1.2 minimum standard deviation for the clusters, for 3-classes da-
taset) MLP (0.7 learning rate and 0.4 momentum, for 5-classes dataset, 0.5 learning
rate and 0.6 momentum, for 4-classes dataset, and 0.8 learning rate and 0.6 momen-
tum, for 3-classes dataset), SVM (1.0 C-value and Polykernel as kernel type, for 5-
classes dataset, 1.0 C-value and Polykernel as kernel type, for 4-classes dataset, and
3.0 C-value and Polykernel as kernel type, for 3-classes dataset), RF (100 trees with
100 random features each, for 5-classes dataset, 100 trees with 162 random features
each, for 4-classes dataset, and 90 trees with 120 random features each, for 3-classes
dataset), LMT (10 iterations for LogitBoost, 1 as minimum number of instances for
splitting a node and 0.01 beta value for LogitBoost, for 5-classes dataset, 4 iterations
for LogitBoost, 1 as minimum number of instances for splitting a node and 0.0 beta
value for LogitBoost, for 4-classes dataset, and 10 iterations for LogitBoost, 1 as
minimum number of instances for splitting a node, and 0.01 beta value for
LogitBoost, for 3-classes dataset), BFTree (5 folds in internal cross validation and 1
as minimum number of instances at the terminal nodes, for 5-classes dataset, 3
folds in internal cross validation and 1 as minimum number of instances at the
terminal nodes, for 4-classes dataset, and 30 folds in internal cross validation and 2
as minimum number of instances at the terminal nodes, for 3-classes dataset), and
SL (no iterations for LogitBoost and 40 as heuristic stop, for 5-classes dataset, 130
iterations for LogitBoost and 50 as heuristic stop, for 4-classes dataset, and no
iterations for LogitBoost and 30 as heuristic stop, for 3-classes dataset).

is causing the issue. Even though the standard RBFN has an
advantage of faster convergence, the meta nature of the mod-
ified R2BN increases the model complexity leading to slow
overall convergence.
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Fig. 3. Accuracy comparison over three different classes’ datasets.
TABLE III
PERFORMANCE OF RZBN MODEL ACCORDING TO
NUMBER OF ITERATIONS
3 Classes 4 Classes 5 Classes
Iterations  Acc. TBM Acc. TBM Acc. TBM
(%) (sec) (%) (sec) (%) (sec)
5 84.71 6.09 80.99 6.67 79.75 7.75
10 86.36 12.07 83.06 13.55 84.30 13.71
15 86.78 19.14 84.30 17.53 84.30 19.56
20 87.19 24.56 85.12 24.27 85.12 25.73
25 87.19 29.89 85.95 30.69 85.54 30.54
30 87.19 34.62 85.95 34.62 85.12 34.86
35 87.19 41.17 86.36 40.54 85.12 41.55
40 87.19 44.19 86.78 4494 85.12 47.55
45 87.19 54.24 87.19 49.09 85.54 56.63
50 87.60 58.22 86.78 54.32 85.95 58.81
55 87.60 66.08 86.36 61.28 86.78 67.70
60 88.02 69.79 86.36 63.82 86.36 73.88
65 88.02 70.54 86.36 70.55 86.78 79.64
70 88.43 73.82 86.36 75.99 85.95 86.08
75 88.43 83.76 87.19 82.16 86.36 91.85
80 88.43 90.13 87.19 86.58 86.36 97.53

The highest accuracy on each dataset is bolded and underlined.

As it was expected, the TBM is increasing linearly as
the number of iterations increases, while the accuracy of the
system seems to tend to reach a maximum value. This is
clearer in Fig. 4, which visualizes the findings of Table III.

As seen in Table III, however, with the configurations of
15 iterations for 3 classes, 25 iterations for 4 classes, and
20 iterations for 5 classes, the time complexities could be
reduced by 74%, 60% and 62%, respectively, which makes
the RZBN the most accurate model with time complexity of
24.945.8, meaning that the time required to build the model
is reduced by 60% with less than 2% drop of accuracy.

An alternative way to reduce TBM is the use of a data con-
densation method. Table IV presents the Acc and TBM of
RZBN when the data condensation method that was described
in Section II-C is used, with sampling percentage from 100%
to 10%. As shown by our results, there are instances in which
the accuracy of R2BN does not significantly degrade, while
TBM reduces remarkably. For example, in 3-classes dataset,
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Fig. 4. Accuracy and time needed to build model of different classes’ datasets
according the number of iterations.

TABLE IV
PERFORMANCE OF RZBN MODEL USING DATA
CONDENSATION METHOD

3 Classes 4 Classes 5 Classes

R-Rate Acc. TBM Acc. TBM Acc. TBM

(%) (sec) (%) (sec) (%) (sec)
0.0 88.43 73.82 87.19 49.09 86.78 67.70
0.1 81.82 54.68 80.82 40.25 79.09 54.05
0.2 81.68 36.39 78.50 40.76 72.28 50.95
0.3 71.82 29.73 70.62 26.18 73.30 40.12
0.4 77.71 26.28 76.40 23.99 70.66 45.55
0.5 71.14 24.12 66.89 18.64 66.44 32.85
0.6 68.50 19.44 61.72 13.87 57.94 26.68
0.7 63.30 16.21 61.68 11.79 57.28 18.00
0.8 69.51 7.60 56.79 6.97 57.83 15.18
0.9 66.04 5.57 55.36 4.59 59.62 4.76

Results from 0% to 90% condensation.

when the sampling percentage is 0.4, the model works 3 times
faster with a loss of 10% in accuracy.

IV. RELATED WORK

To the best of our knowledge, we are one of the first to pro-
vide a dataset containing keystroke dynamics, which have been
collected from free text, recorded from real users during the
daily usage of their computer for a long period of time. It also
includes demographic data to be used for user classification,
such as educational level. The datasets in the literature con-
tain keystroke data, which in most cases, are collected from
users typing 2 to 3 sentences only [36]. Rybnik et al. [37]
created a free text dataset, which contains keystrokes from
nine volunteers. Each volunteer typed a long text of more than
250 characters twice in five sessions. Similarly, the dataset of
Messerman et al. [38] included keystrokes that were recorded
over a 12-month period by 55 volunteers using a Web-mail
application.

Compared to our work, these datasets were created by
users’ typing in specific environments rather than from nor-
mal use. Some other datasets were created on specific devices
rather than on the user’s device, while the recording was
done in a designated area and not in the familiar space

(home, office, etc.) of the volunteers. Finally, few datasets
were created by long time user recording than in some ses-
sions, and few are those that contain data from thousands
of keystrokes in each logfile, as is the case with our own
readers interested in a survey of free text datasets that were
created to test user authentication methods may refer to
Alsultan and Warwick [39].

Regarding to data condensation, because it is a signif-
icant procedure in machine learning, especially in cases
where the speed of a system is crucial, many methods
have been proposed to reduce the training time needed.
Liu et al. [40] used three different methods to speed up the
computation of SVM classifier, namely one with random
selection of data and two other using proximity graphs.
Similarly, Gamboni et al. [41] aimed to increase the speed
of SVMs on large datasets using three methods, i.e., blind
random sampling and two linear-time methods for guided
random sampling. A different approach was proposed by
Rizwan and Anderson [42], where an adaptive data con-
densation scheme for k-NN classifiers is used by reducing
the instances in the training data based on the observed
similarities.

In most cases, the proposed data condensation methods sig-
nificantly reduce the computational time with a slight decrease
of the classification performance. The novelty of the proposed
method of this paper lies in the possibility of applying to
the highly unbalanced datasets, as with the problem we are
dealing with.

V. CONCLUSION

Keystroke-based pattern recognition techniques, as a tool
for behavioral biometrics, are of great importance in digital
forensics. This paper introduced a novel model which recog-
nizes and profiles the educational level of an individual who
stands behind a keyboard.

To accomplish this objective, a new keystroke dynamics
dataset was created, by recording free text captured from par-
ticipants’ daily usage of their computers over a period of
ten months. We captured 242 log files from users who belong
into five educational level classes. Each file contains 2800 to
4500 keystrokes. We extracted 162 features corresponding to
the dwell times and flight times of the participants keystrokes.

Recruiting users and capturing their everyday keystroke is
a hard task, especially if one considers that keystrokes often
contain sensitive information. This increases the complexity
of finding participants that can provide real keystroke dynam-
ics and not synthesized ones. While our dataset is limited and
affected by our participants’ demographics, to the best of our
knowledge, no other dataset with real keystroke dynamics (i.e.,
one captured from free text) exists. Instead, previous datasets
required participants to write free text that was 2 to 3 sentences
long only. By making the features used from our dataset avail-
able to the research community, we hope that we will inspire
and aid more research in keystroke-based pattern recognition.

In this paper, the dataset was fed into a proposed model,
named RZBN, which is the randomized modification of a
well-known radial basis neural network. R?BN is built on
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a shallow-learning architecture, which aims to achieve faster
convergence and smaller extrapolation errors. It improved its
performance in terms of model accuracy, stability, and learning
complexity. The experimental results on the dynamic keystroke
dataset proved that the proposed R2BN can achieve a test error
comparable to or better than the state-of-the-art models.

Our experimental results uncovered a limitation of R”2BN,
namely the long time required to build the model. This can be
addressed by either performing fewer iterations on the boosting
algorithm, or by using a new data condensation method. Our
evaluation uncovered cases where high accuracy is maintained
while TBM is considerably reduced.

For a given set of keystroke data, the randomization of
radial function-based model provides a way of fine-tuning the
global model, as well as improving its predictive performance.
Having the ability to identify the educational level of a user
who types a certain piece of text has significant value in digital
forensics. To the best of our knowledge, this paper introduces
the first model that can achieve above 85% model accuracy,
as well as the greatest model stability over three different
classes in the keystroke-dynamic-based educational level clas-
sification task. The utility of the proposed model have been
proven in dealing with the source of circumstantial evidence
for “putting fingers on keyboard” and for profiling the charac-
teristics of the users. However, we note that the deployment of
such a system must be in accordance with the current, enforced
legal and regulatory framework, as the unauthorized analysis
of keystrokes entails privacy violations, which might involve
sensitive personal information (e.g., in accordance to the EU
legislation).

Our plans for future work include further classification tasks
such as predicting handedness. We also plan further work on
examining alternatives for the data condensation method as
a means to reduce the time that is needed to build the R”2BN.
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