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RGB and Thermal Image Analysis 
for Marble Crack Detection with Deep 
Learning 
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and George A. Papakostas 

1 Introduction 

Marble stands out for its impressive aesthetic value, adding elegance and luxury 
anywhere it is being utilized, such as in constructions, interior decoration, statuary, 
and ornaments. By nature, marble is a unique material. Its physicochemical and 
mechanical properties make it a rather delicate material. Marble has a high porosity, 
which allows liquids to penetrate the stone and cause stains. Therefore, its internal 
structure can be influenced by humidity or decay factors that tend to penetrate mate-
rials with pores and deteriorate their durability. Moreover, micro-cracks on marble 
slabs may increase their porosity. Crack detection and treatment are therefore essen-
tial, especially for slabs being exposed to weathering, since temperature expansions 
may grow the already existing cracks [1]. Currently, marble crack detection is mainly 
performed by manual visual inspection of marble slabs by experienced workers. 
However, defect detection by the naked eye, especially when referring to micro-
cracks on textured marble surfaces, may be inconsistent and error-prone. Machine 
vision-based automatic inspection can save time and improve the quality control of 
marble on the production line, providing a more constant, quicker, and cost-effective 
alternative [2]. Advances in machine learning (ML) and deep learning (DL) are
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significantly impacting the field of machine vision, providing efficient algorithms 
for marble defects classification [3, 4], localization, and segmentation [5]. 

Automatic marble crack detection was first introduced in 1977 [6]; however, to 
date is not yet sufficiently investigated [7]. Moreover, DL applications for semantic 
segmentation of marble cracks are scarce in the literature. A DL segmentation 
approach was proposed in [8]. RGB images were used to train five different convo-
lutional neural networks (CNNs). Results indicated ResNet-50 as the optimal archi-
tecture, reporting a mean Intersection over Union (mIoU) of 67.2%. More recently, 
in [5], a total of 112 DL segmentation model combinations were investigated for 
marble crack detection in color images. The combination of feature pyramid network 
(FPN) with SE-ResNet family feature extraction backbone, resulted in 71.35% mIoU. 
All previous works on marble crack segmentation to date are using color imaging. 
Thermal imaging has been extensively applied to surface crack detection problems, 
claiming to be able to better distinguish cracks on materials, compared to RGB [9]; 
yet, thermal imaging has never been applied for marble crack segmentation. 

To this end, this work for the first time applies thermal imaging for marble crack 
segmentation and comparatively evaluates the results by using different DL models 
on pairs of thermal and color images. The objective of this study is to evaluate the 
performance of various image modalities, such as RGB images and thermal images, 
with the aim of investigating the impact of both image modality and deep learning 
network architecture on segmentation results. To accomplish this, we will test the 
performance of different deep learning models on each image modality separately. 
More specifically, a comparative evaluation of 112 DL segmentation models takes 
place, combining four semantic segmentation models with 28 feature extraction 
backbone networks. Experimental results are valued both based on the segmentation 
model (model-based evaluation) and on the feature extraction method (backbone-
based evaluation). 

The rest of the paper is structured as follows. Materials and methods are analyzed 
in Sect. 2. Experimental results are presented in Sect. 3. Discussion of the results 
and future research directions are provided in Sect. 4. Finally, Sect. 5 concludes the 
paper. 

2 Materials and Methods 

In this section, the used dataset, the proposed methodology, and the selected DL 
segmentation models are presented. 

2.1 Dataset 

The dataset analyzed during the current study was generated in four successive steps. 
In the first step, 38 marble tiles with cracks were handpicked by a domain expert
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Fig. 1 Marble crack pair of images: a RGB image and b thermal image 

from the production line of the marble quarrying company Solakis [10] in Drama,  
Greece. Four sizes of tiles were used: 20 × 40 cm, 30 × 60 cm, 40 × 40 cm, 
and 50 × 60 cm with hairline cracks of up to 2 mm wide. In the second step, all 
tiles were photographed at a steady distance of 90 cm using an MVLMF0824M-
5MP lens mounted on an MV-CA050-10GM/GC digital camera. This method was 
complemented by an automatic screening machine with a diffusion box designed and 
implemented by Intermek A.B.E.E. in Kavala, Greece [11]. The process resulted in 
the high-resolution RGB images of the tiles used in this work. The thermal images 
were obtained in the third step in the laboratories of the International Hellenic Univer-
sity [12], in Kavala Campus, Greece. The tiles were first heated with an infrared 
source and then scanned with the thermal heat-sensitive 206 × 156 Seek Compact 
XR camera [13], focused on the cracked areas. In the final step, the RGB and thermal 
images were first paired, and then, the visible cracks were manually annotated by a 
domain expert using the LabelMe annotation tool [14]. 

The original dataset comprised 24 pairs of thermal and RGB images.1 Figure 1 
illustrates a pair of images, referring to an RGB image and the corresponding thermal 
image of the same marble crack. 

Data augmentation was then applied to the original dataset. Random rotation 
between 0 and 90°, horizontal flip with 50% chance, and vertical Flip with 50% 
chance were selected, resulting in a total dataset of 244 images for each image 
category. Five-fold cross-validation was applied to the final dataset to increase the 
confidence of the model’s performance. 

2.2 Proposed Methodology 

Figure 2 illustrates the basic steps of the proposed methodology. In the first step of 
the proposed methodology, all original images, RGB and thermal were subjected

1 https://github.com/MachineLearningVisionRG/mcs2-dataset. 

https://github.com/MachineLearningVisionRG/mcs2-dataset
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Fig. 2 Proposed methodology 

to basic pre-processing. Contrast-limited adaptive histogram equalization (CLAHE) 
[15] was applied to all RGB images to reduce noise amplification. Thermal images 
were subjected to image embossing to raise crack patterns against the background. 
Moreover, principal components analysis color augmentation (Fancy PCA) was 
also applied to thermal images [16]. The next steps of the proposed approach are 
based on the methodology presented in [5]. Four semantic segmentation models are 
combined with 28 feature extraction networks. Results include the output segmen-
tation image and the numerical results in terms of four well-known segmentation 
metrices, which are evaluated in two different ways: model-based evaluation and 
backbone-evaluation. The process is repeated for RGB and thermal images of the 
same cracks (pairs). It should be noted here, that in this work, the dataset is an orig-
inal in-house dataset of thermal and RGB images of the same marble slabs toward a 
fair comparative evaluation. Therefore, a comparative study of thermal versus color 
imaging takes place, by simultaneously highlighting the optimal DL combination 
that better suits the marble crack segmentation problem for each of the two image 
categories. 

2.3 DL Segmentation Models 

The DL segmentation models in this work are combinations of four DL networks 
and 28 feature extraction backbone networks. The aim is to investigate the most 
efficient architecture for marble crack detection, for RGB images as well as for 
thermal images, and compare the results. 

DL networks were selected based on their popularity, capabilities, and state-of-
the-art reported performances. Therefore, the four selected deep convolutional neural 
networks models are the following: feature pyramid network (FPN) [17], LinkNet 
[18], pyramid scene parsing network (PSPNet) [19], and U-Net [20].
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Feature extraction backbone networks were selected based on the most efficient 
families of networks as reported in the literature. Seven well-known families were 
selected, resulting in 28 total backbones: DenseNet (densenet121, densenet169, and 
densenet201), EfficientNet (efficientnetb0, efficientnetb1, efficientnetb2, efficient-
netb3, and efficientnetb4), Inception (inceptionresnetv2 and inceptionv3), MobileNet 
(mobilenet and mobilenetv2), ResNet (resnet18, resnet34, resnet50, resnet101, 
resnet152, resnext50, and resnext101), SE-ResNet (seresnet101, seresnet152, seres-
next50, and seresnext101), and VGG (vgg16 and vgg19). 

3 Experimental Results 

The proposed methodology was implemented in Python 3.9 employing TensorFlow 
and Keras. All experiments run on an Nvidia RTX 3090 GPU. Original thermal and 
RGB images were resized in 256 × 256 pixels size to be inserted as input to the DL 
models (except for PSPNet requiring 240 × 240 pixels size). For better convergence, 
all backbone networks were pretrained on ImageNet [21]. For all DL networks, 75% 
of their layers were frozen, while the last 25% of the model’s layers were trainable. 

In this work, the loss function (L) applied in all segmentation experiments, and it 
is calculated as the sum of focal (FL) and Dice loss (DL): 

L = FL  + DL (1) 

where the focal loss is 

FL  = −at (1 − pt )γ log( pt ) (2) 

and Dice loss is calculated as follows: 

DL  = 1 − 2y p̂ + 1 
y + p̂ + 1 (3) 

where in (2), (1 − pt )γ is the modulator factor, γ is the focus factor, pt the output 
of the activation function, and at a control weight, while in (3), y it the real, and p̂ 
the predicted value by the model. 

The use of the latter unified loss is proven to better handle class imbalanced 
datasets in semantic segmentation problems and results in improved segmenta-
tion quality and a better balance between precision-recall [22]. Table 1 includes 
information regarding the same hyperparameters for all DL models.

The evaluation of the 112 DL segmentation models was conducted based on two 
different perspectives: based on the segmentation model and based on the feature 
extraction backbone network. In what follows, all experimental segmentation results 
are evaluated after fivefold cross-validation in terms of the following commonly used
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Table 1 Hyperparameters of 
DL models Hyperparameters Setting 

Activation Sigmoid 

Optimizer Adam 

Loss function Focal loss, Dice loss 

Learning rate 0.0005 

Weight decay 1e-8 (0.00000008) 

Epochs 50 

Steps per epoch 20 

Batch size 32 

Early stopping Min_delta = 0.05 
Patience = 5

semantic segmentation metrics: Intersection over union (IoU), precision (P), recall 
(R), and F1-score. 

3.1 Model-Based Evaluation 

All values included in the tables of this section are the mean values of the perfor-
mance results on the training set after fivefold cross-validation. Table 2 includes the 
segmentation results of all models, for both thermal and RGB images. 

As it can be seen in Table 2, the best mIoU performance, 71.61%, is reported with 
the FPN model with RGB images. The second-best performance is reported with the 
same model with thermal images (68.07%). As a general notice, color and thermal 
images display similar performances, with small differences. In all cases, however, 
color images reported slightly better results compared to the corresponding thermal

Table 2 Model-based segmentation results (% mean values) for both thermal and color (RGB) 
images 

Model Image type IoU P R F1-score 

FPN Thermal 68.07 86.79 79.31 70.15 

RGB 71.61 93.96 77.01 73.40 

U-Net Thermal 57.24 72.73 79.36 59.24 

RGB 58.63 75.14 79.47 60.65 

LinkNet Thermal 45.89 54.89 87.99 48.24 

RGB 48.25 58.37 86.11 50.82 

PSPNet Thermal 63.15 85.91 74.53 65.35 

RGB 65.46 89.42 74.00 67.93 

Best mean IoU for thermal and RGB are marked in bold 
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Fig. 3 Indicative results of FPN model to testing images (up-left= ground truth image, down-left= 
RGB/thermal input image, up-right= output segmentation, down-right= output segmentation mask 
applied to the input image): a from RGB input image (98.01% IoU with efficientnetb3 backbone), 
b from thermal input image (IoU 98.00% with seresnet152) 

images. The latter can be attributed to the low resolution of the used thermal camera. 
Figure 3 displays indicative results of FPN with thermal and RGB images of the 
testing set reporting the mean mIoU and the used backbone in each depicted case. 
More specifically, Fig. 3a refers to an RGB input image, resulting in 98.01% IoU 
with efficientnetb3 backbone, while Fig. 3b refers to a thermal input image resulting 
in 98.00% IoU with seresnet152 backbone. 

The best mIoU performances refer to a DL model combined with a certain back-
bone. The latter signifies the fact some feature extraction networks can help a model 
to result in a better segmentation result. In what follows, the evaluation of the results 
is presented from the perspective of the used backbone. 

3.2 Backbone-Based Evaluation 

Results are also evaluated from the backbone perspective, so as to highlight the 
contribution of each backbone to the DL segmentation models. Table 3 summarizes 
the segmentation results of all models, for both thermal and RGB images. All perfor-
mance values are the mean values of the results on the training set after fivefold 
cross-validation.

The best-performing backbone family with thermal images is the EfficientNet 
(efficientnetb4) with 75.49% mIoU. However, the Inception family reported a higher 
average mIoU (73.55%), by considering the average of the results of both inception-
resnetv2 and inceptionv3, compared to the averages of the rest backbone families.
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Table 3 Backbone-based segmentation results (% mean values) for both thermal and color images 

Backbone 
family 

Name Thermal images RGB images 

IoU P R F1-score IoU P R F1-score 

DenseNet densenet121 70.64 89.42 78.76 73.35 74.79 94.53 78.83 77.56 

densenet169 71.14 91.43 77.43 73.71 72.42 95.31 76.13 74.57 

densenet201 67.31 84.60 80.35 70.11 72.64 95.42 76.19 74.86 

EfficientNet efficientnetb0 66.42 79.98 82.86 69.49 77.63 88.26 87.06 81.43 

efficientnetb1 64.47 75.15 86.81 68.02 78.23 85.82 90.09 82.46 

efficientnetb2 70.49 82.89 85.21 73.61 74.81 85.35 87.56 78.65 

efficientnetb3 70.00 81.59 85.54 73.44 75.92 82.88 90.92 80.14 

efficientnetb4 75.49 86.43 86.48 78.79 80.07 90.68 84.41 83.73 

Inception inceptionresnetv2 74.09 91.78 80.42 76.63 73.46 94.72 77.64 75.91 

inceptionv3 73.02 91.37 79.40 75.69 72.78 92.27 79.10 75.44 

MobineNet mobilenet 47.81 58.28 87.90 50.78 62.63 78.15 79.76 65.55 

mobilenetv2 48.23 67.53 76.40 50.36 54.43 86.00 66.98 56.18 

ResNet resnet18 67.01 87.27 77.46 69.40 69.52 94.92 73.67 71.58 

resnet34 63.85 83.79 76.52 66.22 71.24 93.80 76.44 73.54 

resnet50 66.41 90.63 73.72 68.30 68.15 96.01 71.29 70.08 

resnet101 60.63 85.66 73.18 62.09 62.35 98.28 63.67 63.42 

resnet152 63.71 91.05 70.34 65.22 60.64 95.94 63.69 61.62 

resnext50 70.15 92.49 76.40 72.18 70.59 97.00 72.94 72.50 

resnext101 69.38 92.69 75.13 71.13 55.57 85.60 68.11 57.28 

SE-ResNet seresnet18 68.31 87.32 77.92 70.80 69.94 94.78 74.22 71.97 

seresnet34 71.40 95.23 75.03 73.27 72.29 92.78 78.46 74.79 

seresnet50 62.85 74.31 85.63 65.91 79.22 91.16 86.34 82.74 

seresnet101 63.53 78.50 80.03 65.95 68.01 86.09 80.48 70.31 

seresnet152 69.41 88.00 79.58 71.72 61.88 77.01 79.78 64.39 

seresnext50 72.64 86.05 84.83 75.60 78.46 92.39 84.41 81.60 

seresnext101 74.80 90.58 82.41 77.57 65.21 80.86 81.75 67.97 

VGG vgg16 63.08 88.29 72.13 64.97 64.52 87.82 74.32 67.24 

vgg19 62.21 86.14 72.95 64.40 69.77 91.51 75.77 72.81 

Best mean IoU for thermal and RGB are marked in bold

Considering the averages of families, the EfficientNet family which displays the 
higher mIoU performance comes third with 69.37% average mIoU, after Inception 
(73.55%) and DenseNet with 70.89%. 

The best-performing backbone family with RGB images is again EfficientNet and 
efficientnetb4, with 80.07% mIoU. Moreover, considering the average performance 
of each family, the EfficientNet family ranks first (77.33%), followed by DenseNet 
(73.60%) and Inception (73.12%).
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It could be therefore concluded, that in all cases, the three backbones standing 
out are those of EfficientNet, Inception, and DenseNet families. Experimental results 
verify the hypothesis that specific feature extraction networks can improve a model’s 
segmentation performance. 

4 Discussion 

The proposed work experimentally demonstrated that deep learning could guarantee 
efficiency, quality, and reliability in visual inspection of marble slabs. However, 
further research needs to be carried out in order for the marble crack DL segmentation 
algorithms to be implemented in industrial settings. 

The results of this work indicate similar performances for the DL models, for 
both thermal and RGB images. However, cracks can be slightly better detected in 
RGB images rather than in thermal. Infrared thermal imaging is widely used to 
identify cracks on the surface of materials and underneath them [9, 23, 24]. In most 
cases, thermal imaging has been proven most efficient for the detection of micro-
cracks compared to color imaging [25]; however, there is no reported research on 
marble. Poor segmentation results of thermal images in this work, compared to those 
expected, can be attributed to the low resolution of the thermal camera. The thermal 
sensor used in this work was 206 × 156 pixels size, not referring to high-resolution 
thermal imaging. The latter can be clearly observed in the captured images, displaying 
a lot of noise and being of low quality compared to the corresponding RGB ones. 
Figure 4a shows a case of a thermal image with very strong dark areas on the marble 
slab and bright reflections, making the crack not clearly distinguishable, compared 
to the corresponding RGB image (Fig. 4b). 

Therefore, marble crack detection based on deep learning will still be the main 
direction of future research, by additionally considering some important aspects. To

Fig. 4 Marble crack pair of images: a Thermal image and b RGB image. Result indicates that the 
model’s performances were affected by the low quality and intense noise of thermal images 
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this end, future work first includes the use of a high-resolution thermal camera and 
re-capturing of thermal images. Moreover, the fusion of RGB and thermal images 
will also be investigated. In general, a fusion of technologies could lead to better 
segmentation results: micro-thermal sensors, ultrasonic waves, laser scanning ther-
mography, etc., could also be integrated in order to achieve a full range of inspection 
of marble slabs. 

In recent years, DL models have been established in visual inspection. Many 
DL models can be employed to enhance the segmentation performance; yet, high 
performance and fast implementations need to balance for real-time applications. 
Therefore, a future research direction is toward the investigation of robust DL model 
combinations that could accomplish both efficiency and accuracy. Next generation 
of computing technologies, characterized by quantum computing [26], is expected 
to provide fast computing capabilities for real-time visual inspection. 

5 Conclusions 

In this work, a performance evaluation of 112 DL segmentation architectures takes 
place, combining four DL models with 28 feature extraction networks, based on 
thermal and color imaging to detect cracks on marble slabs. Experimental results 
are evaluated based on two perspectives: based on the DL model and based on 
the backbone network. Results indicate that DL models can perform similarly on 
both thermal and RGB images, reporting FPN as the best-performing model, with 
71.61 and 68.07% mIoU, for RGB and thermal images, respectively. Regarding 
the backbone network, results indicated as best-performing backbone family the 
EfficientNet with efficientnetb4, with 80.07 and 75.49% mIoU for RGB and thermal 
images, respectively. 

Acknowledgements This research has been co-financed by the European Union and Greek national 
funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under 
the call RESEARCH—CREATE—INNOVATE (project code: T2EΔK-00238). 

References 

1. Luque A, Ruiz-Agudo E, Cultrone G, Sebastián E, Siegesmund S (2011) Direct observation of 
microcrack development in marble caused by thermal weathering. Environ Earth Sci 62:1375– 
1386. https://doi.org/10.1007/s12665-010-0624-1 

2. Ren Z, Fang F, Yan N, Wu Y (2022) State of the art in defect detection based on machine vision. 
Int J Precis Eng Manuf Technol 9:661–691. https://doi.org/10.1007/s40684-021-00343-6 
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