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Abstract: Cracks can occur on different surfaces such as buildings, roads, aircrafts, etc. The manual
inspection of cracks is time-consuming and prone to human error. Machine vision has been used for
decades to detect defects in materials in production lines. However, the detection or segmentation
of cracks on a randomly textured surface, such as marble, has not been sufficiently investigated.
This work provides an up-to-date systematic and exhaustive study on marble crack segmentation
with color images based on deep learning (DL) techniques. The authors conducted a performance
evaluation of 112 DL segmentation models with red–green–blue (RGB) marble slab images using
five-fold cross-validation, providing consistent evaluation metrics in terms of Intersection over Union
(IoU), precision, recall and F1 score to identify the segmentation challenges related to marble cracks’
physiology. Comparative results reveal the FPN model as the most efficient architecture, scoring
71.35% mean IoU, and SE-ResNet as the most effective feature extraction network family. The results
indicate the importance of selecting the appropriate Loss function and backbone network, underline
the challenges related to the marble crack segmentation problem, and pose an important step towards
the robotic automation of crack segmentation and simultaneous resin application to heal cracks in
marble-processing plants.

Keywords: deep learning; marble crack detection; machine vision; semantic segmentation

1. Introduction

Marble has always been a reference point for Greece, as an integral part of its rich
heritage. In addition to white and off-white marbles, Greece is ranked among the countries
with the greatest variety of light and light-colored marbles such as grey, green, black and
red, as well as textured marbles of exceptional quality [1]. Moreover, Greece acquires
great marble deposits: currently, 210 quarries are fully active; 80 active quarries and
15 major marble-processing plants are established in Eastern Macedonia in Northern
Greece, extracting more than 200,000 m3 of marble annually [2].

Since Greek marble holds an established position in the world market and is on a
path of steady growth, many automations and innovations, accompanied by high-tech
investments, are implemented in the Greek marble industry to maintain high marble
quality. Towards this end, this work aims to provide a step towards the robotic application
of resin (resination) to heal marble cracks by providing computer vision algorithms for
the detection of cracks in marble surfaces, as part of an ongoing project established in
Northern Greece [3].

Cracks are physical separations in marble slabs that deteriorate their quality. Cracks
occur when the stone is quarried, when it is being handled, fabricated or transported, or
after installation due to structural stress. Cracks are not easily visible. Visibility can be
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increased by the appropriate lighting conditions of a space, as well as by the viewing angle.
To date, crack detection in marble-processing plants is performed by the careful manual
visual inspection of slabs. The latter is time-consuming and prone to error, especially
in textured marbles with watermark background designs [4]. In the quarry, innovative
extraction technologies have aimed to reduce extraction defects, leaving the main repair
actions to the polishing phase. To deal with cracks, resin is applied to slabs; the use of
polyester resin to fill and reinforce marble slabs has been an accepted solution for more
than 50 years. Resin is traditionally applied to the entire slab surface to make sure all
cracks are filled, avoiding time-consuming slab-by-slab visual inspection and application.
However, application on the entire slab fails to fill the deeper cracks, which later are filled
manually. Therefore, the automatic targeted application of resin over the crack, before
being applied to the entire slab, would be a feasible solution, offering—at the same time—a
more precise application process towards enhanced marble quality, in terms of appearance
and durability, and a more thorough management of resources (human labor, resin, etc.).

Recently, research on automatic visual inspection on the production line has been ded-
icated to helping industries to improve vision inspection-related processes [5–7]. Artificial
intelligence (AI)-based visual quality inspection employs the capabilities of machine vision
to detect anomalies/defects and product variations, providing algorithms and robotic
automations that can adapt to workforce changes with the aim of achieving scaling pro-
duction and higher quality control levels in an efficient and cost-effective way [8–12]. The
most popular approaches of machine vision are classification, object detection and image
segmentation [13]. Since image segmentation provides pixel-by-pixel details of objects and
it is typically used to locate boundaries such as lines and curves, it is considered the most
suitable technique for anomaly detection.

To this end, the main contribution of this work is the systematic and exhaustive study
of crack detection on marble surfaces with deep learning segmentation techniques. The
novelty lies in the investigation of the performance of a set of 112 model architectures
(4 models and 28 backbones) that takes place for the first time in the literature.

In addition, this work also aims to achieve the following:

• A comparison between feature extraction networks (backbones) to identify the most
suitable one. In the literature, there is limited work on the investigation of the perfor-
mance of DL architectures based on the proposed backbone networks.

• The performance investigation of a proposed unified Loss function, never before
applied to crack segmentation problems.

• The introduction of the first annotated public dataset of marble cracks.
• A simultaneous study on the physiology of cracks in marble surfaces, highlighting

the difficulty of the problem; random textures on marble surfaces do not follow any
deterministic placement rules or exhibit periodicity, making crack detection on them a
challenging task.

• The first step towards the implementation of a vision-based robotic system for crack
segmentation and the simultaneous application of resin for aesthetic reasons, as well
as the reinforcement of slabs and post-processing cost reduction.

The rest of the paper is structured as follows. Section 2 reviews the related work. The
physiology of cracks in marble is analyzed in Section 3. The materials and methods are
presented in Section 4, covering the dataset, the segmentation models and the proposed
methodology. In Section 5, the experimental setup and results are summarized, followed
by a discussion in Section 6. Finally, Section 7 concludes the paper.

2. Related Work

The recent advances in machine learning (ML) and deep learning (DL) have offered
the opportunity for the enhancement of automatic crack-detection algorithms. Cracks can
appear in different kinds of materials; however, the focus in the related literature is mainly
on concrete manmade structures (buildings, pavements, bridges, dams, etc.) where minor
cracking could threaten public safety, rather than on marble.
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The most popular ML models for crack detection are support vector machines
(SVMs) [14,15], artificial neural networks (ANNs) [16,17] and random forests (RFs) [18,19].
In ML methods, crack detection is usually accompanied by crack type classification,
including the preprocessing step of feature extraction. Even though ML methods are
effective, higher-level features are needed to better handle the complex data in images,
such as illumination variations [20]. DL methods can better handle such complex infor-
mation since they can learn the features directly from the data. Convolutional neural
networks (CNNs) are, therefore, commonly used for crack-detection tasks, supporting
classification, object detection and image segmentation [21–25]. Segmentation methods
can lead to a more precise crack localization aided by parallel growth and higher ad-
vances in current remote sensing technologies (cameras) that can provide higher spatial
and spectral resolution data. Moreover, the extracted crack location can also be used for
crack type classification or to extract essential crack features. Therefore, DL segmentation
methods are currently the trend in crack detection.

However, DL methods for crack detection are in their early stages of development,
while research on DL-based crack detection specifically on marble surfaces is scarce in the
literature. It should be noted that a search on the Scopus database returned 589 results by
searching with the keywords “deep learning” and “crack detection”, 544 of which were
dated within the last 5 years; searching within the results with the additional term “marble”
returned only one publication, dated in 2021. With further research on Google Scholar, two
more related works were found, dated in 1997 and 2020. However, these two papers did
not include numerical detection performance results. Therefore, the contribution of the
present work is evident.

Machine vision for marble defect detection was first introduced in 1997 [26]. Authors
developed an image database of aesthetic and physical defects on Carrara marble, designed
a lighting system and proposed vision-based algorithms for the detection of several types
of defects: surface defects, geometric defects, colored inclusions, morphological defects,
monochromatic inclusions and cracks. In [27], the authors discussed the most popular
algorithms and methods for image segmentation to detect defects on marble slabs. The
article concluded the disadvantages of other methods could be resolved by using the k-
means clustering method and that Gaussian blur algorithms, Hough transform, and the
Kenny algorithm were probably the best suited algorithms for the recognition of defects
on the surface of marble slabs. In [28], a deep learning semantic segmentation method
was proposed, providing numerical evaluations and comparative experiments for the first
time. A DeepLabv3+ model was trained to detect fractures and cracks with an initial
dataset. The dataset was augmented and then used to train five different convolutional
neural networks (CNNs): MobileNet-v2, Xception, ResNet-18, Inception-ResNet-v2 and
ResNet-50, using three different optimization algorithms (stochastic gradient descent with
momentum (SGDM), Adam, and root mean square propagation (RMSprop)). The results
indicated ResNet-50 with the RMSprop optimizer as the most efficient architecture, resulting
in a mean Intersection over Union (mIoU) of 0.672.

The limited literature on marbles reveals that the detection of cracks on the surface of
marble slabs presents peculiarities compared with the detection of cracks on other surfaces
such as concrete. This is related to the textured surface of marble slabs, displaying strong
texture information which is unstructured and irregular. This means that in a marble slab,
a crack exhibits similar statistical properties to areas of the image that are part of the marble
texture, e.g., marble watermarks make the detection of cracks really challenging. In general,
computer vision and artificial intelligence have been used for visual inspections of textured
materials, with the aim of identifying engineering features that could represent local or
global distinctiveness of the sampled images [29]. The improvement of deep learning
models with features resulting from texture analysis methods is considered efficient for
enabling better-trained models. The classification of texture is challenging due to properties
such as regularity, randomness, uniformity, and distortion that cannot be properly defined
due to the fact that texture types are infinite and complex. Texture analysis has been used
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to assess the quality of many textured products [30], introducing multiple methods able to
extract textures from an image, such as the grey-level co-occurrence matrix (GLCM), local
binary patterns (LBPs), etc. Information regarding the physiology of cracks in marble is
provided in the following section (Section 3).

3. The Physiology of Cracks in Marble

Marble is a metamorphic, i.e., heated and compressed, rock originating from sedimen-
tary limestone. Marble is quarried naturally and contains mainly calcium. In some cases,
magnesium can prevail, and then the rock is called dolomite [31]. Marble is quarried in
blocks of 3 × 2 × 5 m. From these blocks, slabs are cut, usually in the size of 3 × 2 m with
thickness ranging from 2 to 4 cm. Slabs are further cut into tiles of various sizes, depending
on the needs of the construction. The schematic procedure of marble from the quarry into
tile is illustrated in Figure 1. Photos of marble in all processing stages are provided in
Figure 2.
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Figure 2. (a) A quarry at Paggaion Mountain, Kavala, Greece; (b) two blocks of white marble
originating from Thassos Island, Greece; (c) a marble slab; (d) a tile of Grey Lais dolomitic marble
from Falakron Mountain, Drama, Greece.

Nowadays, slabs are treated with a wide range of chemical products, e.g., with a
polymer or epoxy resin base to enforce the stone prior to the cutting of the tiles [32].
Traditional treatment can include three steps depending on the quality of the marble. The
succession of these steps can vary depending on the types of flaws encountered. Usually,
in the first step, the resin is applied on the complete surface of the slab, penetrating it and
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closing its pores and minor cracks of maximum 2 mm of aperture. In the second step, a
net is applied with the use of a chemical resin to the backside of the slab. In the third
step, bigger cracks have to be treated locally with the application of special polymer fillers,
which have to match the natural color of the stone. Although the resination of the complete
slab in the first step has already been automated, the filling of flaws such as bigger cracks
and holes, referring to the third step of the process, requires the inspection of a trained
worker and manual repair using special chemical fillers. This work aims to develop an
algorithm capable of regulating the amount of resin applied according to the aperture of
the crack.

Traditionally, white marble with no watermark texture and flaws such as cracks,
inclusions, or cavities was used as an ornamental stone and was rated as a high-quality
stone [33]. Although that type of marble is still highly valued in the market, progress in
using chemical products has allowed the marble industry to repair even highly defected
marble slabs. Flaws in marble slabs can be grouped into three main categories, as illustrated
in Figure 3. Type I includes bigger cracks and holes as a result of natural processes during
the exhumation of the rock mass due to brittle tectonics. These flaws are created before the
quarrying of the marble blocks. Type II flaws are smaller cracks as a result of the handling
of the material during the quarrying of the marble in the factory. These are treated usually
by the resination of the entire slab. Type III defects are caused during and after installation
and are not treated in an industrial environment. In this work, the aim is to develop an
algorithm to detect cracks of Type I and Type II.
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Figure 3. Types of cracks, cause, characteristics and their treatment.

The detection of flaws using computer vision is a difficult task due to the complex
textures on many marble types marketed today. It is very common to encounter Type I
cracks that have been filled naturally with minerals. These types of filled cracks are called
fissures and do not create problems on the stability of the slab (Figure 4). Due to their
optical similarity to cracks, fissures pose a significant problem to the automatic recognition
of cracks.
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of the image is a fissure; (b) textured marble with cracks. Two parallel cracks at the right–bottom
section of the image. Both depicted marble samples have not been treated with any resin.

4. Materials and Methods

In this section, the materials and methods are summarized, including the image
dataset, the semantic segmentation model architectures, and the proposed methodology.

4.1. Dataset

In order to perform marble crack segmentation, a crack dataset was formulated. The
original marble crack dataset, namely the Marble Crack Segmentation (MCS) Dataset, and
annotations are available online at https://github.com/MachineLearningVisionRG/mcs-
dataset (accessed on 26 September 2022). The dataset was a reformation of the dataset for
marble surface anomaly detection 2, provided by Aman Rastogi [34]; only the images of
the “crack” folder of the train and test set were used. Both folders contained augmented
images due to the scant availability of crack images. All augmented images were removed,
resulting in 246 original RGB images of 256 × 256 pixel size. Cracks in the images were
manually annotated using the LabelMe annotation tool [35].

Five-fold cross-validation was applied to the dataset to increase the confidence in the
models’ performance. At each fold, 156 images were used for training, 40 for validation
and 50 for testing. Figure 5 illustrates the formulation of the proposed marble crack dataset.
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4.1.1. Data Preprocessing

All original images were subjected to adaptive histogram equalization (AHE) using
the contrast-limited AHE (CLAHE) variant. The latter was applied to reduce noise amplifi-
cation [36]. It should be noted that for each backbone case, a corresponding preprocessing
function was applied to the images. For example, for the DenseNet model, the images are
scaled between 0 and 1, while for the case of the ResNet models, the images’ channels are
converted from RGB to BGR and the pixel values are zero-centered.

https://github.com/MachineLearningVisionRG/mcs-dataset
https://github.com/MachineLearningVisionRG/mcs-dataset
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4.1.2. Data Augmentation

The Albumentations [37] library provides a plethora of different augmentation tech-
niques. Therefore, in this work, the images in the training set were augmented in real time
while training the examined models. More specifically, at each iteration, a minibatch of 32
images was selected and traditional augmentation techniques were applied to the images,
including uniformly random rotation (between 0 and 90◦) and horizontal and vertical
flipping with 50% chance.

4.2. Semantic Segmentation—DL Model Architectures

Semantic segmentation can provide dense pixel-level information useful to fully un-
derstand a scene. However, most of the backbones used in segmentation models for feature
extraction resulting from pretrained models may lead to poor performance, especially in
small categories, such as marble cracks, due to the lack of sufficient spatial information [38].
Therefore, efficient combinations of model architectures need to be investigated for the
problem under study. In this work, 4 deep convolutional neural network models are
fully trained (all layers) and 28 backbone architectures for feature extraction are tested for
marble crack semantic segmentation. The reason to fully train the models is due to the
aforementioned weakness of pretrained models to extract meaningful spatial features from
new image samples for the problem under study. Furthermore, to strengthen this decision,
a pretrained baseline model is also examined for comparative reasons.

4.2.1. Models

In this work, four deep CNN models were selected: Feature Pyramid Network
(FPN) [39], LinkNet [40], Pyramid Scene Parsing Network (PSPNet) [41] and U-Net [42].
The selection was due to the powerful capabilities of the models for feature extraction,
learning representations and their end-to-end trainable structures. Moreover, all models
were widely used recently in various segmentation applications, resulting in state-of-the-art
performances [43–46].

Baseline Model

A baseline model was selected to demonstrate the performance of a pretrained DL
model on cracks compared with the performance of fully trained DL models on the avail-
able marble crack data. The baseline model architecture, namely, DeepCrack, available
online: https://github.com/yhlleo/DeepCrack (accessed on 14 September 2022) (code and
dataset available at [47]), was described in [48]. The model was pretrained on RGB images,
illustrating cracks on manmade structures such as asphalt and concrete.

4.2.2. Backbone Architectures

Backbones refer to feature extraction networks and are responsible for computing
features from the input images. The selection of the most suitable network for feature
extraction should not be completed by chance, since it is strongly related to the performance
of the target task (e.g., segmentation) and it is responsible for, among other things, the
computational complexity of the DL model. Many backbone networks have been developed
and used in various DL models [49].

It should be noted that, in the literature, there are a lack of research works that aim to
compare proposed feature extraction networks for their DL applications [49,50]. However,
in computer vision tasks, the selection of the appropriate backbone network is critical;
unsuitable backbones for specific applications can deteriorate the model’s performance and
be significantly complex and computationally costly.

In this work, a solution to the aforementioned problem is investigated by evaluating
the various existing backbones used for feature extraction. More specifically, for each of
the 4 models, 28 backbone networks are examined towards the investigation of the most
efficient combination. The types (families) and names of the backbones are summarized
in Table 1.

https://github.com/yhlleo/DeepCrack
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Table 1. Families and names of backbones.

Family Name

DenseNet densenet121, densenet169, densenet201

EfficientNet efficientnetb0, efficientnetb1, efficientnetb2,
efficientnetb3, efficientnetb4

Inception inceptionresnetv2, inceptionv3
MobileNet mobilenet, mobilenetv2

ResNet resnet18, resnet34, resnet50, resnet101,
resnet152, resnext50, resnext101

SE-ResNet
seresnet18, seresnet34, seresnet50,

seresnet101, seresnet152, seresnext50,
seresnext101

VGG vgg16, vgg19

4.3. Methodology

In this work, crack semantic segmentation is formulated into a binary image-labeling
problem, where 1 refers to crack and 0 refers to non-crack.

The proposed methodology derives from the combination of 4 semantic segmentation
models with 28 feature extraction networks. The aim of this modular design is to investigate
the combination that best fits the crack segmentation problem. In addition, the most
appropriate Loss function for the problem under study is also investigated. Experimental
results are evaluated based on two different perspectives: (1) based on the model and
(2) based on the backbone. Figure 6 illustrates the proposed methodology.
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Figure 6. An illustration of the proposed methodology. Input images are provided for the proposed
segmentation architecture, examining the combination of 4 semantic segmentation models with
28 feature extraction networks; results include the output segmentation image and the numerical
experimental results of the models which are evaluated based on two different perspectives: (1) based
on the model and (2) based on the backbone.

Loss Function

Challenges in semantic segmentation tasks, such as imbalanced data, can be better
handled by adopting the appropriate Loss function towards better convergence of the
models. DL methods use stochastic gradient descent to optimize and learn targets. For
more accurate and quick learning, the mathematical representations of targets, namely, Loss
functions, need to be able to cover all boundary cases. For binary problems such as semantic
segmentation, where the class of a pixel can be either 0 or 1, state-of-the-art approaches
adopt, among others, Focal Loss (FL) and Dice Loss (DLo) as the optimization targets [51].

FL is commonly used with imbalanced data, due to its ability to down-weight the con-
tribution of easy examples, thus enabling the model to learn the harder ones. DLo is used to
evaluate segmentation results by calculating the similarity between two images. The selec-
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tion of the appropriate Loss function is crucial, especially for class-imbalanced data such as
the case of marble cracks. Recently, unified losses were presented in the literature to handle
class-imbalanced datasets for image segmentation towards the constant improvement of
segmentation quality, and were also associated with better recall-precision balance [52].

Towards this end, in this work, the Loss function calculated as the sum of Focal and
Dice Loss is selected as the optimization target applied in all segmentation experiments.
The proposed unified Loss function is used to generalize Dice-based and Focal-based Loss
functions into a single framework.

Loss = FL + DLo (1)

The Focal Loss (FL) is as follows:

FL(pt) = −αt(1 − pt)
γ log(pt) (2)

where (1 − pt)
γ is the modulation factor, pt is the output of the activation function, γ is

the focus factor where γ > 0, αt is a control weight defined in [0,1] and pt is the estimated
probability of class. Dice Loss (DLo) is defined by the equation:

DLo(y, p̂) = 1 − 2yp̂ + 1
y + p̂ + 1

(3)

where y is the real value and p̂ is the value predicted by the prediction model.
Considering that both Focal and Dice Loss are cost-effective operations, the proposed

unified Loss is not expected to considerably increase the training time compared with the
component Loss functions [52].

5. Experiments and Results

In this work, all algorithms were implemented in Python 3.9 using TensorFlow and
Keras [53] on a personal computer with an Nvidia RTX 3090 GPU. Original RGB images
(256 × 256) were uniformly resized to 224 × 224 pixels to be used as input images to
the segmentation models (except for PSPNet, which required input image dimensions of
240 × 240).

5.1. Model Setup

For each model, a five-fold cross-validation technique was incorporated to better
evaluate its effectiveness and robustness. The models are trained for 20 epochs. To avoid
overfitting, early stopping is applied on the validation set; training stops once the validation
loss stays above or below 0.001 for five consequent epochs.

All backbones have pretrained weights on ImageNet for faster and better convergence.
For the baseline model, the adopted configuration is described in [47]. Table 2 includes the
details of the hyperparameters used in all DL models.

Table 2. Models’ hyperparameter setup.

Hyperparameter Settings

Activation ‘sigmoid’
Optimizer Adam

Loss function Focal Loss, Dice Loss
Learning rate 0.0005

Batch size 32
Epochs 20 (23 steps per epoch)
Metrics IoU, recall, precision, F1 score
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5.2. Metrics

In order to report numerical evaluations for the examined segmentation models, four
well-known semantic segmentation metrics were adopted: Intersection over Union (IoU),
precision (P), recall (R) and F1 score. In the case of semantic segmentation, a pixel-by-pixel
analysis is performed. In order to calculate IoU, the basic mathematical definitions of True
Positive, False Positive and False Negative are required.

In image segmentation, True Positive (TP) is defined as the intersection of the Ground
Truth (GT) with the segmentation mask (S) (mathematical operation AND between GT
and S):

TP = GT * S (4)

False Positive (FP) is the prediction outside the GT area (mathematical operation OR
between GT and S, minus GT):

FP = (GT + S) − GT (5)

False Negative (FN) is the number of pixels in the GT area that the model failed to
predict (mathematical operation OR between GT and S, minus S):

FN = (GT + S) − S (6)

IoU measures similarity between finite sample sets, and based on the above, it is
calculated as follows:

IoU =
TP

(TP + FP + FN)
(7)

Precision (P) and recall (R) are also commonly used for semantic segmentation evalua-
tion, and are calculated as follows:

P =
TP

(TP + FP)
R =

TP
(TP + FN)

(8)

Finally, F1 score is calculated as the weighted average of precision and recall:

F1 − score = 2 ∗ R ∗ P
R + P

(9)

5.3. Results

In addition to the models’ evaluation for all backbone combinations (model-based
evaluation), the evaluation of the efficiency of each backbone is also examined separately
(backbone-based evaluation). Moreover, the results include the evaluation of the pretrained
baseline model with the marble crack dataset (baseline model-evaluation) for comparative
reasons. In what follows, experimental results after five-fold cross-validation are presented.

5.3.1. Model-Based Evaluation

Table 3 includes the performance results of the FPN model on the testing set after
the five-fold cross-validation strategy. Best values, mean values and standard deviation
are included in the table. Moreover, among the best IoU performances on the training set
images, the two most frequently involved backbone networks are also reported (Frequent
Best Backbones). It should be noted that maximum (Max) values in the performance tables
refer to the higher reported performance of each metric, not necessarily referring to the
same testing image.
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Table 3. Performance (%) of FPN on the test set after 5-fold cross-validation. Best mIoU is marked in
bold.

Metric Max Mean Standard
Deviation

Frequent Best IoU
Backbones

IoU 98.46 71.35 22.67 inceptionv3 (5 cases)
P 100 91.54 12.09
R 100 78.71 23.74 seresnet152/resnet50 (4 cases)

The best results with the FPN for each one of the 50 images of the testing set from
each fold involved the inceptionv3 backbone network (in 5 cases) the most times, followed
by seresnet152 and resnet50 (both in 4 cases). The best overall performance in terms of
IoU reached 98.46% by using seresnet152, while the reported mIoU was 71.35%. Figure 7
illustrates the indicative segmentation results with the FPN of different measured IoU
performances.
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Figure 7. Indicative images of the testing set to illustrate FPN performance. For each image: up–left
is the ground truth image, down–left is the RGB input image, up–right is the output segmentation
and down–right is the output segmentation mask applied to the input image. (a) Best (IoU 98.46%
with seresnet152); (b) medium (IoU 93.24 with seresnet50); (c) moderate (IoU 37.41 with seresnet50).

Table 4 summarizes the performance results of LinkNet. The best IoU performance
reached 98.54% with densenet169 feature extraction, while the IoU was 70.39%, slightly
lower than FPN. Figure 8 illustrates the indicative segmentation results with LinkNet
referring to the different measured IoU performances.

Table 4. Performance (%) of LinkNet on the test set after 5-fold cross-validation. Best IoU is marked
in bold font.

Metric Max Mean Standard
Deviation

Frequent Best IoU
Backbones

IoU 98.54 70.39 23.08 densenet169/resnet50 (5 cases)
densenet201/efficientnetb1/

efficientnetb2/resnet50/resnext50/
seresnet18/seresnet50 (3 cases)

P 100 86.13 15.75
R 100 82.73 23.17

F1-score 99.18 75.34 22.89

Performance results of PSPNet are included in Table 5. The best IoU performance
reached 98.29% with the mobilenet feature extraction network, while the mIoU was 62.85%.
Compared with the previous two models, PSPNet displayed a poorer performance re-
garding all measure metrics. Figure 9 illustrates the indicative segmentation results with
PSPNet for different measured IoU performances.
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Figure 8. Indicative images of the testing set to illustrate LinkNet performance. For each image: up–
left is the ground truth image, down–left is the RGB input image, up–right is the output segmentation
and down–right is the output segmentation mask applied to the input image. (a) Best (IoU 98.54%
with densenet169); (b) medium (IoU 93.12% with densenet169); (c) moderate (IoU 35.23% with
resnet152).

Table 5. Performance (%) of PSPNet on the test set after 5-fold cross-validation. Best mIoU is marked
in bold font.

Metric Max Mean Standard
Deviation

Frequent Best IoU
Backbones

IoU 98.29 62.85 28.63
seresnext50 (11 cases)P 100 93.84 9.53

R 100 68.14 31.35
mobilenet (7 cases)F1 score 99.05 66.21 29.63
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Figure 9. Indicative images of the testing set to illustrate PSPNet performance. For each image: up–
left is the ground truth image, down–left is the RGB input image, up–right is the output segmenta-
tion and down–right is the output segmentation mask applied to the input image. (a) Best (IoU 

Figure 9. Indicative images of the testing set to illustrate PSPNet performance. For each image: up–
left is the ground truth image, down–left is the RGB input image, up–right is the output segmentation
and down–right is the output segmentation mask applied to the input image. (a) Best (IoU 98.29%
with mobilenet); (b) medium (IoU 91.83 with vgg19); (c) moderate (IoU 13.75% with resnet50).

Finally, regarding U-Net, the performance results are presented in Table 6. U-Net
reported the best performance among all models, reaching an IoU of 98.83% with the
resnet50 backbone. However, mIoU was not the best compared with the previous models,
ranking U-Net in third place, with a score of 68.91%. Figure 10 illustrates indicative
segmentation results with U-Net for different measured IoU performances, as for all
previous models.
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Table 6. Performance (%) of U-Net on the test set after 5-fold cross-validation. Best mIoU is marked
in bold font.

Metric Max Mean Standard
Deviation

Frequent Best IoU
Backbones

IoU 98.83 68.91 25.37
seresnext101 (5 cases)P 100 88.48 15.34

R 100 79.16 26.43 resnext50/resnext101/
seresnet34/seresnext50 (4 cases)F1-score 99.37 73.43 25.54
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Figure 10. Indicative images of the testing set to illustrate U-Net performance. For each image: up–left
is the ground truth image, down–left is the RGB input image, up–right is the output segmentation and
down–right is the output segmentation mask applied to the input image. (a) Best (IoU 98.83% with
resnet50); (b) medium (IoU 93.62% with efficientnetb1); (c) moderate (IoU 29.91% with resnet101).

It should be noted that the best (Max) IoU performance refers to a certain backbone,
which is not necessarily the backbone that appears in most of the best testing cases (referring
to the Frequent Best IoU Backbones in the tables). However, in all models, the best IoU per-
formance was achieved with either one of the backbones that contributed more frequently
towards the best IoU results. Therefore, a trend can be seen that some feature extraction
networks can lead to better segmentation results when combined with specific models,
regarding the marble crack-detection problem. Further investigation on the backbone
contribution to the models’ performance metrics is provided in an upcoming subsection.

As it can be observed from subfigure (a) in Figures 3–6 that the best performance
for all models was reported on the same image of the testing set. However, the crack
on the specific image may be considered small, less intense and less obvious than the
cracks on the other images that displayed poorer performance (e.g., Figures 9c and 10c,
etc.). The latter is attributed to the nature of the image, depicting a marble slab with fewer
dark areas and spots, illuminations, and with a cleaner surface, that is, an image with less
noise. It is well known that noise is one of the main challenges in visual-inspection tasks.
Constant illumination or the use of thermal imaging can provide feasible solutions for noise
reduction, as discussed in Section 6.

In order to comparatively evaluate the models’ performance, apart from the results in
Tables, comparative figures are additionally provided: Figure 11a comparatively demon-
strates the mIoU performance of all examined models; Figure 11b shows the precision
metric; Figure 11c shows the recall metric; and Figure 11d shows the F1 score.

Subfigures of Figure 11 illustrate that FPN, U-Net and LinkNet share the same degree
of performance in all reported metrics, while PSPNet performs slightly worse.

However, the overall comparative results indicated that the most efficient model for
the problem under study was FPN, with a 71.35% IoU. Recall that, in [28], the semantic
segmentation model DeepLabv3+ for marble crack detection resulted in an IoU of 67.2%.
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Therefore, the undertaken investigation resulted in a more efficient model architecture,
reaching a state-of-the-art performance. However, since the data used in [28] were not the
same as in our case, a baseline model was tested on the same data for a fairer comparison.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 22 
 

 

areas and spots, illuminations, and with a cleaner surface, that is, an image with less noise. 
It is well known that noise is one of the main challenges in visual-inspection tasks. Con-
stant illumination or the use of thermal imaging can provide feasible solutions for noise 
reduction, as discussed in Section 6. 

In order to comparatively evaluate the models’ performance, apart from the results 
in Tables, comparative figures are additionally provided: Figure 11a comparatively 
demonstrates the mIοU performance of all examined models; Figure 11b shows the preci-
sion metric; Figure 11c shows the recall metric; and Figure 11d shows the F1 score. 

  
(a) (b) 

  
(c) (d) 

Figure 11. (a) Mean IοU score performance of all models; (b) mean precision performance of all 
models; (c) mean recall performance of all models; (d) mean F1 score performance of all models. 

Subfigures of Figure 11 illustrate that FPN, U-Net and LinkNet share the same degree 
of performance in all reported metrics, while PSPNet performs slightly worse. 

However, the overall comparative results indicated that the most efficient model for 
the problem under study was FPN, with a 71.35% IοU. Recall that, in [28], the semantic 
segmentation model DeepLabv3+ for marble crack detection resulted in an IoU of 67.2%. 
Therefore, the undertaken investigation resulted in a more efficient model architecture, 
reaching a state-of-the-art performance. However, since the data used in [28] were not the 
same as in our case, a baseline model was tested on the same data for a fairer comparison. 

5.3.2. Baseline Model Evaluation 
The results regarding the selected baseline model [48] on the same testing set are 

included in Table 7. Mean IοU is lower than any of the proposed examined model archi-
tectures. The same is true for F1 score and recall. The low recall value in image segmenta-
tion is typically due to under-segmentation, indicating that significant image structures 
were not captured [54]. 

  

Figure 11. (a) Mean IoU score performance of all models; (b) mean precision performance of all
models; (c) mean recall performance of all models; (d) mean F1 score performance of all models.

5.3.2. Baseline Model Evaluation

The results regarding the selected baseline model [48] on the same testing set are
included in Table 7. Mean IoU is lower than any of the proposed examined model architec-
tures. The same is true for F1 score and recall. The low recall value in image segmentation
is typically due to under-segmentation, indicating that significant image structures were
not captured [54].

Table 7. Performance (mean values—%) of the pretrained baseline model on the test set after 5-fold
cross-validation.

Model IoU P R F1-Score

Baseline (DeepCrack) 48.27 98.17 48.90 52.02

In general, the decision on which metric to rely on is related to the type of the examined
problem. In this work, the four selected metrics are reported for comparative reasons
towards a more general evaluation. It should be noted, however, that the main evaluation
is based on IoU, since it is the most commonly used metric in semantic segmentation due
to its straightforward calculation and interpretation that make it extremely effective.

It should be highlighted here that comparative results with other methods in the
literature are scarce. As reviewed in the related work section, only in [28] are there available
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numerical evaluations and comparative experiments of deep learning marble crack se-
mantic segmentation methods. The results in [28] indicated Res-Net-50 with the RMSprop
optimizer as the most efficient architecture, resulting in a mean Intersection over Union
(mIoU) of 0.672. (67.2%). Additionally, in this case, the measured IoU is lower than most of
the examined model architectures. However, the results cannot be directly compared since
they refer to a different marble crack image dataset.

5.3.3. Backbone-Based Evaluation

In this subsection, the derived experimental results are also translated from the back-
bone point of view. We have already observed that the DL segmentation models tested on
the same dataset using different backbones resulted in different performance measurements.
The latter strongly indicates that the use of specific backbones for a specific task can greatly
affect the performance of a DL model. In this section, our experimental results are examined
by evaluating the contribution of the used backbone. Table 8 includes all models’ measured
mean performances after 5-fold cross-validation regarding the backbone networks.

Table 8. Performance (mean values—%) classification based on the used backbone. Five best mIoU
values are marked in bold font.

Family Name IoU P R F1 Score

DenseNet
densenet121 76.51 88.89 86.14 82.04
densenet169 74.10 87.52 85.18 79.82
densenet201 73.59 90.81 81.45 78.90

EfficientNet

efficientnetb0 76.34 88.78 85.99 81.91
efficientnetb1 76.67 89.20 85.97 82.23
efficientnetb2 75.77 89.69 84.63 81.33
efficientnetb3 76.38 89.26 85.59 81.95
efficientnetb4 76.14 89.63 84.94 81.57

Inception inceptionresnetv2 73.11 88.97 82.75 78.37
inceptionv3 71.89 90.78 79.83 77.01

MobileNet
mobilenet 74.29 88.54 84.23 79.79

mobilenetv2 65.72 89.18 75.13 70.69

ResNet

resnet18 69.04 92.77 75.11 73.55
resnet34 75.59 88.48 85.56 81.20
resnet50 70.55 91.84 77.54 75.45
resnet101 63.51 93.73 68.87 67.15
resnet152 63.75 94.04 68.78 67.52
resnext50 67.50 93.49 72.91 72.12

resnext101 69.59 92.41 75.81 74.43

SE-ResNet

seresnet18 68.50 92.12 75.22 72.99
seresnet34 70.52 91.52 77.75 75.35
seresnet50 76.67 89.34 85.81 82.13

seresnet101 76.84 88.53 86.91 82.35
seresnet152 76.46 89.00 86.05 81.95
seresnext50 77.30 89.91 86.08 82.75

seresnext101 76.51 88.66 86.04 82.02

VGG
vgg16 74.01 87.47 84.74 79.61
vgg19 73.64 86.06 85.63 79.33

As it can be seen from Table 8, the best IoU values were reported with the Se-ResNet
family, and more specifically, with seresnext50, followed by seresnet101, seresnet50 and
seresnext101. The SE-ResNet module has been introduced recently and used in various DL
applications [55–57]. It is based on the combination of a residual module (ResNet) and a
squeeze-and-excitation (SE) block, and is capable of extracting informative features by using
spatial and channel-wise information within local receive fields. Research findings [57]
concluded that the SE block produced significant performance improvements compared
with the state-of-the-art DL architectures and added minimal computational costs.
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It should be noted that the best performing model, FPN, reached the higher reported
IoU combined with seresnet152, while the same backbone network was among the most
frequently used backbones resulting in the best model performance. The latter was also
observed regarding the other three models; in all cases, a backbone from the SE-ResNet
family was one of the two most frequent backbones responsible for the best reported IoU
performances. Based on the above, it can be concluded that SE-ResNet family backbones
can extract more representative features for the marble crack problem, and when combined
with an FPN model can result in optimal segmentation results.

6. Discussion, Challenges and Future Directions

It seems that there is a growing interest in image-based automatic crack detection.
Machine vision algorithms can guarantee non-destructive inspection, tirelessly, quickly and
efficiently by using inexpensive sensory equipment (e.g., RGB cameras). For the problem
under study, some of the challenges that need to be confronted in image-based detection are
due to the random shape and irregular size of cracks, especially on textured surfaces such as
marbles, and the additional various noises such as irregular lighting conditions, shadowing,
as well as other imperfections (fissures) and material breakage in the captured images.
The latter was the motivation for investigating the performance of multiple combinations
of models with feature extraction backbones in order to reach a conclusion about which
architecture could be more efficient for the particular marble crack detection problem with
its inherent difficulties.

The results indicated that the models’ performance was indeed affected by noise
issues, mainly due to the used dataset, depicting marble slabs that were dirty and dusty,
and subjected to different lighting conditions. Future work will focus on the collection
of a marble crack image dataset under constant illumination, as well as the annotation of
images with access to the physical marbles. Moreover, thermal imaging will be investigated.
Studies reveal that thermal imaging can be used to better distinguish cracks on concrete
compared with RGB images [58]. By using RGB images, only superficial cracks can be
detected, while the internal features of the marble cannot be fully discovered. Infrared
thermal imaging can aim to better distinguish invisible cracks that are superficial as well as
internal cracks and other defects.

Another challenge is the limited and imbalanced data of marble cracks. Crack seg-
mentation is a two-class problem. However, the crack covers only a small pixel area of
the image. Pretrained models on surface anomalies/cracks on concrete, etc., may lead to
poor performance when used with small and imbalanced data, such as marble cracks, due
to the lack of sufficient spatial information. This is the reason why the baseline model
(pretrained on other crack data) resulted in poor performance: 48.27% of IoU compared
with the performance of the segmentation models trained from scratch, reaching an IoU of
up to 71.35%. In general, the potential of a DL model is related to the used deep architecture
which, in many cases, may contain many layers and levels but fail to successfully relate
them to the contextual understanding of the data. Therefore, the pretrained baseline model
which is competent in the specific task of concrete crack detection, when used in marble
crack detection, even if it is a close/similar task, does not perform well. All the training
should be repeated since the baseline model failed to understand the data context but
learned what it was trained on. With the application of the same DL model architectures in
different domains/applications, the models need to be maintained at each time by using the
new features and data for the model to be able to effectively identify the new task scenarios.

However, despite being comparatively high, the performance of the best DL model
in this work is considered low, and there are prospects for further improvement: models
should be fully trained with augmented data from a small set of original data. Deep
structures require more data; the more powerful and accurate a model, the more data it
requires. Therefore, the DL models’ inherent complexity, the substantial number of deep
layers needed for better accuracies and the corresponding amounts of training data are
major limitations. Both annotation and the availability of data are challenging for DL
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applications. For semantic segmentation, the data need to be annotated first in order to
train the DL model. Data annotation is also demanding, due to the number of objects that
need to be labeled, resulting in time-consuming and labor-intensive work that also needs a
human’s expert knowledge. It should be mentioned here that one of the contributions of
this work is also the introduction of the first annotated public dataset for marble cracks.
Future work will focus on marble crack data collection with the aim of compiling a larger
dataset for the problem under study. However, it should be noted that deeper architectures
with more training data would be computationally intensive, requiring high-performance
computational resources and long training times. In such cases, powerful processors able
to handle specialized computations are needed. Alternatives are also available; cloud GPUs
offer, on-demand, the opportunity, especially for beginners, to experiment with DL without
needing to purchase any equipment.

Loss functions are also crucial for the determination of a DL model’s performance.
For complex tasks such as image segmentation, the Loss function needs to be decided
based on the properties of the training data (distribution, skewness, boundaries, etc.). Since
a universal Loss does not exist, in this work, a unified Loss function was investigated
for enhanced performances. It should be mentioned here that several experiments were
conducted before deciding on the selected Loss; binary cross-entropy, Focal Loss and Dice
Loss were investigated separately, but led to lower performances and were, therefore,
abandoned. The significant differences in the models’ performance by utilizing a different
Loss function underlines its great importance in class-imbalanced image segmentation
tasks. Future work aims to focus on Loss functions’ contribution by examining several Loss
functions with a variety of class-imbalanced datasets.

Finally, this work highlights the major contribution of the backbone network to the
models’ performance. The results indicated the SE-ResNet family as the most efficient
network family for feature extraction for the marble crack segmentation problem. Future
work should focus more on the examination of backbone networks, since it would be useful
to assess whether performance improvements can be generalized to a specific state-of-the-
art feature extraction family for the better handling of class imbalance.

This work revealed that, for a small and imbalanced dataset, there are efficient DL
architectures able to provide marble crack segmentation with high accuracy. This work
poses the first step towards the implementation of the first robotic automation for resin
application on marble slabs in marble-processing plants.

Robot for Marble Crack Detection and Resin Application

This section outlines the preliminary conceptual design and basic components of an
autonomous robot for resin application in marble slabs for the healing of surface cracks.
The development of the proposed DL algorithm for the visual localization/detection of
cracks in marble tiles is meant to be integrated in the system’s design. In what follows,
assumptions to determine the general preliminary framework of the robotic system to be
developed are made. Therefore, the proposed system may consist of the following three
main parts:

1. The visual-inspection part. This will include:

# A diffusion box to ensure the uniform and consistent lighting of all slabs;
# A high-resolution (HR) RGB camera for the best possible visualization of the

cracks;
# A thermal camera for displaying the thermal distribution on the surface of the

slab, in the form of a thermal image, for better distinguishing cracks possibly
not visible with RGB imaging;

# Supporting image processing and crack-detection algorithms.

2. The robotic resin application part. This will include:

# A robotic arm;
# An appropriate end-effector for resin application;
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# Supporting algorithms for robot navigation and more.

3. Auxiliary parts. This will include:

# A conveyor belt that will move the marble slabs one by one into the basic
system part, the visual-inspection part and the robotic resin application part;

# An electric heating device/source underneath the diffusion box to thermally
excite the surface of the marble slabs for thermal imaging;

# A high-performance computer to speed up the execution of the DL segmenta-
tion algorithms and process all other system-supporting algorithms.

The conceptual system will operate as follows. The conveyor belt will transport the
marble slabs towards the robotic system. The movement of the conveyor belt will stop
when a marble slab enters the diffusion box. The image captured by the camera(s) will
contain only the marble slab to be analyzed so as not to segment the slab from the image
background. DL supporting algorithms will process the captured images to locate surface
cracks. Once the cracks are detected, the conveyor belt will the slab forward to the robotic
resin application part to heal them. The movement of the conveyor belt will stop when
the marble slab enters the resin application area to keep the slab stationary so as to apply
the resin exactly over the detected cracks. The robotic arm will navigate towards the slab
and will apply resin on the detected cracks. It should be noted that this is just a conceptual
outline of the resin application robotic automation, and its final design may vary. The
system parts are graphically illustrated in Figure 12.
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In Figure 12, the contribution of the present work is underlined in bold. Marble crack
detection is the main algorithmic task of the visual-inspection system, which is demanding
due to the nature of cracks and all related challenges, as already discussed. Therefore, this
work poses an important step towards the realization of such a robotic automation. Future
work will focus on the design and development of the overall system with the aim to be
used practically in marble-processing plants.

7. Conclusions

This work provides the most up-to-date systematic and exhaustive study on marble
crack detection in color images based on DL techniques. A performance evaluation of
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112 DL segmentation models (4 models combined with 28 feature extraction networks)
on RGB marble slab images using five-fold cross-validation is given, providing consistent
evaluation metrics in terms of IoU, precision, recall and F1 score.

The experimental results are translated based both on the selected model as well
as on the used backbone. The comparative evaluation demonstrated that the combina-
tion of FPN with SE-ResNet family backbones can result in a higher performance (mIoU
71.35% after five-fold cross-validation) compared with the state-of-the-art baseline methods
using the marble crack dataset. This work managed to identify all detection challenges
related to marble cracks’ physiology and disposed of the first annotated public dataset of
marble cracks.

In the future, authors plan to exploit better strategies to merge representative feature
extraction networks to DL models and examine more DL architecture combinations. More
images of marble crack regions will be added to the current database so as to make it more
comprehensive. Additional Loss functions will be tested, and unified Loss functions will be
proposed. However, the main focus of future work will be on the design and development
of the outlined robotic resin application system.

Author Contributions: Conceptualization, G.K.S. and G.A.P.; methodology, G.K.S. and G.A.P.; soft-
ware, G.K.S.; validation, A.G.O. and A.L.; investigation, E.V., G.K.S., A.G.O. and A.L.; resources, E.V.,
A.S., I.T. and V.K.; data curation, G.K.S. and E.V.; writing—original draft preparation, E.V., A.G.O.
and G.K.S.; writing—review and editing, E.V., G.K.S., A.G.O. and G.A.P.; visualization, G.K.S. and
G.A.P.; supervision, G.A.P.; project administration, G.A.P. and I.T.S.; funding acquisition, G.A.P., I.T.S.,
V.K. and A.S. All authors have read and agreed to the published version of the manuscript.
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